
Lycée Victor Hugo – Besançon
PC* Année 2025-2026

ESPACES PROBABILISÉS
Exercices

1 On souhaite montrer que toute partie infinie A de N est dénombrable.
On pose x0 =min(A) et pour tout n ∈ N, xn+1 =min(A ∖ {x0, . . . , xn}).
Soit alors f ∶ N→ A, qui à tout n ∈ N associe f(n) = xn.

1. Montrer que f est bien définie.

2. Montrer que f est strictement croissante et surjective.

3. Conclure.

2 On souhaite montrer que P(N) n’est pas dénombrable.
Raisonnons par l’absurde : on suppose que l’on peut écrire P(N) = {An, n ∈ N}.
En considérant l’ensemble A = {n ∈ N tel que n ∉ An}, montrer une absurdité. Conclure.

3 1. Calculer ∑
(i,j)∈N2

i + j
i!j!

.

2. Calculer
+∞

∑
n=0

+∞

∑
k=n

1

k!
.

4 Combien de fois faut-il lancer un dé équilibré pour avoir au moins une chance sur deux d’obtenir
un six ?

5 On tire au hasard, successivement et sans remise, 6 lettres du mot « ANAGRAMME ».
On considère le mot formé par les lettres obtenus dans l’ordre où elles apparaissent.

1. Quelle est la probabilité d’obtenir le mot « GRAMME » ?

2. Même question en supposant qu’il y a remise après tirage d’une lettre.

6 Soit n ∈ N avec n ⩾ 2.
On organise un tirage au sort entre n équipes de football de 1ère division et n équipes de 2ème
division (chaque équipe joue un match et un seul).

1. Calculer la probabilité pn que tous les matchs opposent une équipe de 1ère division à une équipe
de 2ème division.

2. Calculer la probabilité qn que tous les matchs opposent deux équipes de la même division.

3. Montrer que pour tout n ∈ N∗, on a 22n−1

n ⩽ (2nn ) ⩽ 22n.

4. En déduire lim
n→+∞

pn et lim
n→+∞

qn.

7 Soit (An)n∈N une suite d’événements deux à deux incompatibles d’un espace probabilisé (Ω,A , P ).
Montrer que lim

n→+∞
P (An) = 0.
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8 On effectue une suite infinie de lancers d’un dé.
Pour tout i ∈ N∗, on note Ai l’événement « On obtient un six au ième lancer ».

1. Définir par une phrase ne comportant aucun vocabulaire mathématique chacun des événements
:

E1 =
+∞

⋂
i=4

Ai, E2 = (
3

⋂
i=1

Ai) ∩ (
+∞

⋂
i=4

Ai) , E3 = ⋃
i>3

Ai.

2. Écrire à l’aide des Ai l’événement « On obtient au moins une fois six au-delà du nème lancer ».

3. On pose Cn = ⋃
i>n

Ai. Montrer que la suite (Cn)n∈N∗ est décroissante.

Caractériser d’une phrase ne comportant pas de vocabulaire mathématique l’événement C = ⋂
n⩾1

Cn.

4. Écrire à l’aide des Ai les événements :

Bn = {On n’obtient plus que des six à partir d’un nème lancer}
B = {On n’obtient plus que des six à partir d’un certain lancer}

9 Formule de Poincaré ou formule du crible
Soit n ∈ N avec n ⩾ 2. Soit A1, . . . ,An n événements d’un espace probabilisé.
Montrer qu’on a :

P (
n

⋃
i=1

Ai) =
n

∑
k=1

((−1)k−1 ∑
1⩽i1<i2<...<ik⩽n

P (Ai1 ∩Ai2 ∩ . . . ∩Aik)).

10 Une urne contient initialement une boule blanche et une boule noire. On effectue des tirages
successifs d’une boule dans l’urne selon le protocole suivant : si la boule blanche est tirée, le jeu
s’arrête, et si une boule noire est tirée, la boule tirée est remise dans l’urne et on rajoute dans l’urne,
avant le tirage suivant, deux boules noires.
On note A l’événement « le jeu s’arrête ».
Pour tout n ∈ N∗, on note An l’événement « les n premiers tirages amènent une boule noire».

1. Exprimer A en fonction des événements An pour n ∈ N∗.

2. Montrer que pour tout n ∈ N∗, P (An) =
n

∏
k=1

(1 − 1

2k
) .

3. Déterminer P (A).

11 Un rat se trouve dans un labyrinthe face à quatre portes dont une seule conduit à la sortie.
Chaque fois qu’il choisit une mauvaise porte, le rat reçoit une légère décharge électrique et revient
à son point de départ. On s’intéresse au nombre d’essais utilisés pour trouver la bonne porte, en
envisageant successivement trois hypothèses :

1. Le rat a une mémoire parfaite. À chaque nouvel essai, il évite toutes les mauvaises portes
choisies précédemment et choisit au hasard parmi les autres.

2. Le rat a une mémoire immédiate. À chaque nouvel essai, il évite la mauvaise porte de l’essai
précédent et choisit au hasard parmi les trois autres.

3. Le rat n’a pas de mémoire. Il choisit à chaque essai de façon équiprobable l’une des portes.

Pour tout n ∈ N∗, on note Bn l’événement « Le rat trouve la bonne porte en n essais ».
Déterminer P (Bn) pour tout n ∈ N∗.
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12 On tire au hasard un nombre entier strictement positif.
On suppose que pour tout n ∈ N∗, on obtient n avec la probabilité 1

2n .

1. Vérifier qu’il s’agit bien d’une probabilité sur N∗.

2. Soit k ∈ N∗. On note Ak l’événement « l’entier tiré est un multiple de k. »
Donner la probabilité de Ak pour k ∈ N∗ et celle de A2 ∪A3.

3. On note B l’événement « l’entier tiré est un nombre premier ».
Donner une valeur approchée à 10−2 près de la probabilité de B.

13 Anaïs et Benjamin lancent à tour de rôle le même dé cubique parfait.
Anaïs joue en premier. Le vainqueur est le premier qui obtient un 6.
On considère les événements A « Anaïs gagne la partie », B « Benjamin gagne la partie » et pour
n ∈ N∗, Fn « la partie se termine au nème lancer ».

1. Exprimer A et B à l’aide des Fn.

2. Calculer la probabilité de l’événement Fn pour n ∈ N∗.

3. En déduire la probabilité de A et de B.

4. Soit D l’événement « Il n’y a pas de vainqueur ».
Quelle est sa probabilité ? Est-ce l’événement impossible ?

14 Soit r ∈ N∗. Une urne contient des boules indiscernables au toucher, blanches et noires.
La proportion de boules blanches est p (p ∈]0,1[) et la proportion de boules noires est q = 1 − p.
On effectue une infinité de tirages avec remise.
On note A l’événement « Les tirages ne donnent pas r boules blanches ».
On cherche à déterminer P (A).
Pour (n, k) ∈ N∗ ×N, on note :
Hn,k=« tous les tirages du n-ème au (n + k)-ème donnent des boules noires»,
Hn=« tous les tirages à partir du n-ème donnent des noires»,
H=« il existe un lancer à partir duquel on n’obtient que des noires».

1. Soit n ∈ N∗. Déterminer une égalité d’événements entre Hn et les Hn,k pour k ∈ N.
En déduire la probabilité de l’événement Hn.

2. Déterminer une égalité d’événements entre H et les Hn pour n ∈ N∗.
En déduire la probabilité de l’événement H.

3. Déterminer la probabilité de l’événement A.

15 On considère deux jetons J1, et J2 équilibrés.
Le jeton J1 possède une face numérotée 0 et une face numérotée 1 et le jeton J2 possède deux faces
numérotées 1. Un joueur choisit au hasard un jeton puis effectue une série de lancers avec ce jeton.
On note E l’événement « le jeton J1 est choisi pour le jeu » et, pour tout entier naturel k non nul,
Uk l’événement « le k-ième lancer fait apparaître une face numérotée 1 ».

1. Déterminer la probabilité que le joueur obtienne n fois (n ∈ N∗) une face portant le numéro 1
lors des n premiers lancers.

2. Dans cette question, on suppose que le joueur a obtenu n fois (n ∈ N∗) une face portant le
numéro 1 lors des n premiers lancers.
Quelle est la probabilité qu’il ait joué avec le jeton J1 ?
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16 Soit (α,β) ∈]0,1[2.
Une information est transmise à l’intérieur d’une population. Chaque personne peut transmettre
l’information qu’elle a reçue fidèlement ou la transformer en son contraire. Lorsqu’une personne
reçoit la bonne information, elle la transmet fidèlement avec la probabilité α et lorsqu’une personne
ne reçoit pas la bonne information, elle la transforme en son contraire avec la probabilité 1 − β.
Pour tout n ∈ N, on note An l’événement « l’information après n transmissions est correcte ».
On pose pour tout n ∈ N :

Xn = (
P (An)
P (An)

)

1. Déterminer une matrice M ∈M2(R) telle que pour tout n ∈ N, Xn+1 =MXn.

2. Montrer que M est diagonalisable et la diagonaliser.

3. En déduire une expression de P (An) pour tout n ∈ N.

17 On considère une particule se déplaçant à chaque seconde sur l’un des trois sommets A, B, C
d’un triangle selon le procédé suivant : elle reste une fois sur deux là où elle se trouve et sinon, elle
se rend sur un des deux autres sommets de façon équiprobable.
On suppose qu’initialement, la particule se situe de façon équiprobable sur l’un des trois sommets.
Pour tout n ∈ N, on note An (resp. Bn et Cn) l’événement « la particule se trouve à la nème seconde
en A (resp. B et C)» et on note an (resp. bn et cn) la probabilité de An (resp. Bn et Cn).

1. On pose pour tout n ∈ N, Xn =
⎛
⎜
⎝

an
bn
cn

⎞
⎟
⎠
.

Déterminer A ∈M3(R) telle que pour tout n ∈ N, Xn+1 = AXn.

2. Montrer que A est diagonalisable et la diagonaliser.

3. Déterminer an, bn et cn pour tout n ∈ N.

18 Soit N ∈ N∗.
Deux joueurs A et B s’affrontent en des parties indépendantes. Le joueur A dispose d’une fortune
égale à n euros tandis que le joueur B dispose de N − n euros. À chaque tour, le joueur A a la
probabilité p ∈]0,1[ de l’emporter et le joueur B a la probabilité complémentaire q = 1− p. Le joueur
perdant cède alors un euro au vainqueur. Le jeu continue jusqu’à la ruine d’un des deux joueurs.
On note an la probabilité que le joueur A l’emporte lorsque sa fortune initiale vaut n.

1. Que valent a0 et aN ? Établir la formule de récurrence : ∀n ∈ J1,N − 1K, an = pan+1 + qan−1.

2. En déduire que la suite (un)1⩽n⩽N−1 définie par un = an − an−1 est géométrique.

3. Calculer an en distinguant les cas p = q et p ≠ q.

4. Montrer que le jeu s’arrête presque sûrement.

19 Loi du 0-1
Soit (An)n⩾1 une suite d’événements définis sur un même espace probabilisé (Ω,A , P ).

1. On suppose que la série ∑
n⩾1

P (An) converge. Montrer que P (
+∞

⋂
n=1

+∞

⋃
k=n

Ak) = 0. Interpréter ce

résultat.

2. On suppose que les événements An sont mutuellement indépendants et que la série ∑
n⩾1

P (An)

diverge. Montrer que P (
+∞

⋂
n=1

+∞

⋃
k=n

Ak) = 1. Interpréter ce résultat.
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