GUIDE DE REVISION 2026

En jaune sont surlignées les questions de cours classiques a connaitre parfaitement.

1. Optique

Notions et contenus

Capacités exigibles

1.1 Modéle scalaire des ondes lumineuses

Modeéle de propagation dans
I’approximation de I'optique géométrique.

Vibration lumineuse.

Associer la grandeur scalaire de l'optique a
une composante d’'un champ électrique.

Chemin optique. Déphasage du a la
Propagation

Exprimer le retard de phase en un point en
fonction du retard de propagation ou du
chemin optique.

Surfaces d'ondes. Théoreme de Malus.
Onde plane, onde sphérique ; effet d’une
lentille mince dans I'approximation de Gauss.

Utiliser I'égalité des chemins optiques sur les
rayons d’un point objet a son image.

Associer une description de la formation des
images en termes de rayon lumineux et en
termes de surfaces d’onde..

Cours O1

Exercice 1 page 1

Exercice 2 page 1

Modele d’émission.
Largeur spectrale. Cohérence temporelle.

Classer différentes sources lumineuses
(lampe spectrale basse pression, laser,
source de lumiére blanche...) en fonction du
temps de cohérence de leurs diverses
radiations.

Citer quelques ordres de grandeur des
longueurs de cohérence temporelle
associées a différentes sources.

Relier, en ordre de grandeur, le temps de
cohérence et la largeur spectrale de la
radiation considérée.

Cours O1

Exercice 3 page 1

Réception d’'une onde lumineuse.
Récepteurs. Intensité lumineuse.

Comparer le temps de réponse d’un
récepteur usuel (ceil, photodiode, capteur
CCD) aux temps caractéristiques des
vibrations lumineuses.

Relier I'intensité lumineuse a la moyenne
temporelle du carre de la grandeur scalaire
de l'optique.

Mettre en ceuvre un capteur optique

Cours O1

TP 4

Notions et contenus

Capacités exigibles

1.2 Superposition d’ondes lumineuses

Superposition de deux ondes quasi-
monochromatiques non synchrones ou
Incohérentes entre elles.

Justifier et utiliser I'additivité des intensités.

Superposition de deux ondes quasi-
monochromatiques cohérentes entre elles
formule de Fresnel

Etablir la formule de Fresnel.
Identifier une situation de cohérence entre
deux ondes et utiliser la formule de Fresnel.

Contraste

Associer un bon contraste a des ondes
d’intensités voisines.

Superposition de N ondes quasi-
monochromatiques cohérentes entre elles, de
méme amplitude et dont les phases sont en
progression arithmétique dans le cas N>>1.

Expliquer qualitativement I'influence de N

sur l'intensité et la finesse des franges
brillantes observées.

Etablir, par le calcul, la condition
d’interférences constructives et la demi largeur
21UN des franges brillantes.

Etablir et utiliser la formule indiquant la
direction des maxima d’intensité derriere un
réseau de fentes rectilignes paralléles.

Cours 02

Exercice 4 page 2

Cours 05

Exercice 20 page 9

Exercice 20 page 9




Notions et contenus

Capacités exigibles

1.3 Exemple de dispositif interférentiel par
division du front d’onde : trous d’Young

Dispositif-modéle des trous d’Young
ponctuels dans un milieu non dispersif
(source ponctuelle a grande distance
finie ; observation a grande distance
finie).

Champ d'interférences. Ordre
d'interférences.

Définir, déterminer et utiliser I'ordre
d’interférences.

Franges d'interférences.

Justifier la forme des franges observées sur
un écran éloigne paralléle au plan contenant
les trous d’Young.

Exercice 6 page 3

Du dispositif-modeéle au dispositif réel.

Fentes d’Young.
Montage de Fraunhofer.

Identifier I'effet de la diffraction sur la figure
observée.

Expliquer l'intérét pratique du dispositif des
fentes d’Young comparativement aux trous
d’Young.

Exprimer I'ordre d'interférences sur I'écran
dans le cas d’un dispositif des fentes d’Young
utilisé en configuration de Fraunhofer

Perte de contraste par élargissement spatial
de la source.

Utiliser un critére semi-quantitatif de
brouillage des franges portant sur I'ordre
d’interférences pour interpréter des
observations expérimentales.

Perte de contraste par élargissement
spectral de la source.

Utiliser un critére semi-quantitatif de
brouillage des franges portant sur I'ordre
d’interférences pour interpréter des
observations expérimentales.

Relier la longueur de cohérence temporelle,
la largeur spectrale et la longueur d’'onde en
ordres de grandeur.

Observations en lumiére blanche (blanc
d’ordre supérieur, spectre cannelé).

Déterminer les longueurs d‘ondes des
cannelures.

Exercice 7 page 3

Exercice 9 page 4

Exercice 10 page 5

Exercice 16 page 8

Notions et contenus

Capacités exigibles

1.4 Exemple de dispositif interférentiel par
division d’amplitude interférometre de
Michelson

Interféromeétre de Michelson équivalent a
une lame d’air éclairée par une source
spatialement étendue.

Localisation des franges. Franges d’égale
inclinaison.

Justifier les conditions d’observation des
franges d’égale inclinaison, le lieu de
localisation des franges étant admis.
Etablir et utiliser 'expression de I'ordre
d’interférences en fonction de I'épaisseur
de la lame, I'angle d’incidence et la
longueur d’onde.

Décrire et mettre en ceuvre les
conditions d’éclairage et d’observation
adaptées a I'utilisation d’un
interférométre de Michelson en lame
d’air.

Mesurer I’écart en longueur d’onde
d’un doublet et la longueur de
cohérence d’une radiation.
Interpréter des observations faites en
lumiere blanche avec I'interféromeétre
de Michelson en configuration lame
d’air.

Exercice 12 page 6

Exercice 13 page 6

TP 6

Exercice 15 page 7

Interféromeétre de Michelson équivalent a
un coin d’air éclairé par une source
spatialement étendue.

Localisation des franges. Franges d’égale
épaisseur.

Justifier les conditions d’observation des
franges d’égale épaisseur, le lieu de

Exercice 17 page 8




localisation des franges étant admis.
Utiliser I'expression donnée de la différence
de marche en fonction de I'épaisseur pour
exprimer l'ordre d’interférences.

Décrire et mettre en ceuvre les
conditions d’éclairage et d’observation
adaptées a l'utilisation d’'un
interféromeétre de Michelson en coin
d’air.

Caractériser la géométrie d’un objet ou
I'indice d’un milieu a I'aide d’un
interféromeétre de Michelson.
Interpréter des observations faites en
lumiére blanche avec l'interféromeétre

TP7

Exercice 18 page 8

2. Electronique

Notions et contenus

Capacités exigibles

Production, acquisition et traitement d’un
signal électrique.

Oscillateur quasi-sinusoidal réalise en
bouclant un filtre passe-bande du deuxiéme
ordre avec un amplificateur.

Mettre en ceuvre un oscillateur quasi
sinusoidal et analyser les spectres des
signaux générés.

Echantillonnage.

Expliquer I'influence de la fréquence
d’échantillonnage.

Condition de Nyquist-Shannon

Utiliser la condition de Nyquist-Shannon.
Mettre en évidence le phénomeéne de
repliement de spectre au moyen d’un
oscilloscope numérique ou d’'une
acquisition numérique.

Détection synchrone.

Mettre en ceuvre un protocole de
détection synchrone.

TP 9
Exercice 2 page 11

TP 1

Exercice 1 page 11
TP 1

TP 14

3. Thermodynamique

Notions et contenus

Capacités exigibles

3.1 Systémes ouverts en régime stationnaire

Premier et deuxiéme principes de la
thermodynamique pour un systéme ouvert en
régime stationnaire, dans le seul cas d'un
écoulement unidimensionnel dans la section
d’entrée et la section de sortie.

Etablir les relations Ah+Ae= wy+q et AS=Se+S.
et les utiliser pour étudier des machines
thermiques réelles a l'aide de diagrammes
thermodynamiques (T,s) et (P,h).

Exercice 4 page 13

Notions et contenus

Capacités exigibles

3.2 Diffusion de particules

Vecteur densité de flux de particules jw.

Exprimer le flux de particules traversant une
surface orientée en utilisant le vecteur jy

Bilans de particules.

Utiliser la notion de flux pour traduire un
bilan global de particules.

Etablir 'équation locale traduisant un bilan
de particules dans le cas d’un probleme ne
dépendant qu’une d’'une seule coordonnée
d’espace en coordonnées cartésiennes,
cylindriques et sphériques, éventuellement
en présence de sources internes.

Utiliser I'operateur divergence et son
expression fournie pour exprimer le bilan
local de particules dans le cas d'une
géomeétrie quelconque.

Loi de Fick.

Utiliser la loi de Fick. Citer 'ordre de grandeur
d’'un coefficient de diffusion dans un gaz dans
les conditions usuelles.

Cours T2

Exercice 5 page 15

Exercice 7 page 16

Cours T2




Régimes stationnaires.

Utiliser, en régime stationnaire, la
conservation du flux sous forme locale ou
globale en I'absence de sources internes.

Equation de diffusion en I'absence de sources
internes.

Etablir I'équation de la diffusion en
I'absence de sources internes.

Utiliser I'opérateur laplacien et son
expression fournie pour écrire I'équation de
diffusion dans le cas d’une géométrie
quelconque.

Analyser une équation de diffusion en
ordres de grandeur pour relier des échelles
caractéristiques spatiale et temporelle.

Approche microscopique du phénomene de
diffusion.

Mettre en place un modeéle probabiliste discret
a une dimension de la diffusion (marche au
hasard) et évaluer le coefficient de diffusion
associé en fonction du libre parcours moyen et
de la vitesse quadratique moyenne.

Capacite numérique : a I'aide d’'un langage
de programmation, simuler la marche au

hasard d’'un grand nombre de particules a
partir d’'un centre et caractériser I'étalement
spatial de cet ensemble de particules au
cours du temps.

Exercice 8 page 16

Cours T2

Cours T2

Notions et contenus

Capacités exigibles

3.3 Diffusion thermique

Vecteur densité de flux thermique ja

Exprimer le flux thermique a travers une
surface orientée en utilisant le vecteur jq.

Premier principe de la thermodynamique.

Etablir, pour un milieu solide, I'équation
locale traduisant le premier principe dans
le cas d’un probléme ne dépendant qu’une
d’une seule coordonnée d’espace en
coordonnées cartésiennes, cylindriques et
sphériques, éventuellement en présence
de sources internes.

Utiliser 'opérateur divergence et son
expression fournie pour exprimer le bilan
local dans le cas d’'une géométrie
quelconque, éventuellement en présence de
sources internes.

Loi de Fourier.

Utiliser la loi de Fourier. Citer quelques ordres
de grandeur de conductivité thermique dans les
conditions usuelles : air, eau, béton, acier

Régimes stationnaires. Résistance thermique.

Utiliser la conservation du flux thermique
sous forme locale ou globale en I'absence
de source interne.

Définir la notion de résistance thermique par
analogie avec I'électrocinétique.

Etablir 'expression d’une résistance
thermique dans le cas d’'un modele
unidimensionnel.

Utiliser les lois d’associations de résistances
thermiques.

Equation de la diffusion thermique

Etablir une équation de diffusion thermique.
Utiliser I'opérateur laplacien et son
expression fournie pour écrire I'équation de
diffusion dans le cas d’une géométrie
quelconque.

Analyser une équation de diffusion en
ordres de grandeur pour relier des échelles
caractéristiques spatiale et temporelle.
Utiliser la loi de Newton fournie comme
Condition aux limites a wune
solide/fluide.

interface

Capacite numérigue : a I'aide d’'un langage
de programmation, résoudre I'équation de la
diffusion thermique a une dimension par
une méthode des différences finies dérivée

Cours T3

Exercice 9 page 17

Cours T3

Exercice 13 page 19

Exercice 10 page 17

Exercice 14 page 19

Exercice 11 page 18




de la méthode d’Euler explicite de résolution
des équations différentielles ordinaires.

Mettre en ceuvre un dispositif
expérimental utilisant une caméra
thermique ou un capteur dans le
domaine des infrarouges.

TP 17

Notions et contenus

Capacités exigibles

3.3 Rayonnement thermique

Approche descriptive du rayonnement du
corps noir.

Loi de Wien, loi de Stefan.

Effet de serre. Albedo

Exploiter les expressions fournies des lois de
Wien et de Stefan.

Analyser quantitativement I'effet de serre en
s’appuyant sur un bilan énergétique dans le
cadre d’'un modéle a une couche.

Exercice 15 page 20

4. Mécanique

Notions et contenus

Capacités exigibles

4.1 Changements de référentiel

Référentiel en translation rectiligne uniforme
par rapport a un autre : transformation de
Galilée, composition des vitesses.

Relier la transformation de Galilée et la
formule de composition des vitesses a la
relation de Chasles et au caractére
suppose absolu du temps.

Composition des vitesses et des
accélérations dans le cas d’un référentiel en
translation par rapport a un autre : point
coincident, vitesse d’entrainement,
accélération d’entrainement.

Exprimer la vitesse d’entrainement et
I’'accélération d’entrainement.

Composition des vitesses et des accélérations
dans le cas d’'un référentiel en rotation
uniforme autour d’un axe fixe : point
coincident, vitesse d’entrainement,
accélération d’entrainement, acceleration de
Coriolis.

Exprimer la vitesse d’entrainement et
I’'accélération d’entrainement.

Citer et utiliser I'expression de I'accélération
de Coriolis.

Cours M1

Exercice 1 page 21

Exercice 2 page 21

Notions et contenus

Capacités exigibles

4.2 Dynamique dans un référentiel non

galiléen

Cas d'un référentiel en translation par rapport a
un référentiel galiléen force d'inertie
d’entrainement

Déterminer la force d'inertie d’entrainement.
Appliquer la loi de la quantité de mouvement,
la loi du moment cinétique et la loi de I'énergie
cinétique dans un référentiel non galiléen.

Exercice 4 page 22

Cas d’'un référentiel en rotation uniforme autour
d’'un axe fixe dans un référentiel galiléen : force
d’inertie d’entrainement, force d'inertie de
Coriolis.

Exprimer la force d'inertie d’entrainement et la
force d’inertie de Coriolis.

Associer la force d'inertie d’entrainement
axifuge a I'expression familiere « force
centrifuge >.

Appliquer la deuxiéme loi de Newton, le
théoreme du moment cinétique et le théoréme
de I'énergie cinétique dans un référentiel non
galiléen.

Exercice 6 page 23

Champ de pesanteur : définition, évolution
qualitative avec la latitude, ordres de grandeur

Distinguer le champ de pesanteur et le champ
gravitationnel.

Capacite numérique : a I'aide d'un langage de
programmation, illustrer un effet lie au
caractére non galiléen du référentiel terrestre

Equilibre d’un fluide dans un référentiel non
galiléen en translation ou en rotation uniforme
autour d'un axe fixe dans un référentiel galiléen.

Etablir et utiliser 'expression de la force
d’inertie d’entrainement volumique.

Cours M2

Exercice 10 page 24

Cours M2




Notions et contenus

Capacités exigibles

4.3 Mécanique des fluides

4.3.1 Description d’un fluide en mouvement

Champ eulérien des vitesses. Lignes de champ. | Définir et utiliser I'approche eulérienne. Cours M3
Tubes de champ.
Ecoulement stationnaire. Discuter du caractere stationnaire d’un
écoulement en fonction du référentiel
d’étude.
Dérivée particulaire de la masse volumique. | Etablir 'expression de la dérivée Cours M3

Ecoulement incompressible.

particulaire de la masse volumique.
Utiliser I'expression de la dérivée
particulaire de la masse volumique pour
caractériser un écoulement
incompressible..

Débit massique. Débit volumique.

Définir le débit massique et I'écrire comme
le flux du vecteur densité de courant de
masse a travers une surface orientée.
Définir le débit volumique et I'écrire comme
le flux du champ de vitesse a travers une
surface orientée.

Equation locale de conservation de la masse.

Etablir 'équation locale de conservation de
la masse dans le seul cas d'un probleme
unidimensionnel en géométrie cartésienne.
Citer et utiliser une généralisation admise
en géométrie quelconque a I'aide de
I'opérateur divergence et son expression
fournie.

Exercice 11 page 25

Exercice 12 page 25

Caractérisation d’'un écoulement incompressible
par la divergence du champ des vitesses.

Traduire localement, en fonction du champ
de vitesses, le caractére incompressible
d’'un écoulement.

Exercice 11 page 25

Dérivée particulaire du vecteur-vitesse : terme
local ; terme convectif.

Associer la dérivée particulaire de la

vitesse a I'accélération de la particule de

fluide qui passe en un point.

Utiliser I'expression de I'accélération avec le
terme convectif sous la forme v.grad v.

Utiliser I'expression fournie de l'accélération
convective en fonction de grad (v¥/2) et rot v x
v

Exercice 12 page 25

Ecoulement irrotationnel défini par la nullité
du rotationnel du champ des vitesses en tout
point ; potentiel des vitesses.

Traduire localement, en fonction du champ
de vitesses, le caractére irrotationnel d’'un
écoulement et en déduire I'existence d’'un
potentiel des vitesses.

Exercice 15 page 26

Notions et contenus

Capacités exigibles

4.3.2 Actions de contact dans un fluide en
mouvement

Forces de pression. Equivalent volumique.

Exprimer la force de pression exercée par
un fluide sur une surface élémentaire.
Exprimer I'équivalent volumique des forces
de pression a l'aide d’'un gradient.

Exercice 17 page 27

Contraintes tangentielles dans un écoulement
V= V(y) Ux au sein d’un fluide newtonien ;
viscosité.

Utiliser I'expression fournie dF=ndv,/dy dSuy

Equivalent volumique des forces de viscosité
dans un écoulement incompressible.

Etablir 'expression de I'équivalent
volumique des forces de viscosité dans le
cas d’'un écoulement de cisaillement a une
dimension et utiliser sa généralisation
admise pour un écoulement incompressible
quelconque.

Cours M4

Trainée d'une sphére solide en mouvement
rectiligne uniforme dans un fluide newtonien :
nombre de Reynolds ; coefficient de trainée
Cx ; graphe de Cx en fonction du nombre de
Reynolds.

Evaluer un nombre de Reynolds pour choisir
un modeéle de trainée linéaire ou un modeéle de
trainée quadratique.

Notions et contenus

Capacités exigibles

4.3.3 Equations dynamiques locales

Equation de Navier-Stokes dans un fluide
newtonien en écoulement incompressible.
Terme convectif. Terme diffusif. Nombre de
Reynolds dans le cas d’une unique échelle
spatiale.

Utiliser I'équation de Navier-Stokes dans un
fluide newtonien en écoulement
incompressible.

Evaluer en ordre de grandeur le rapport du
terme convectif sur le terme diffusif et le
relier au nombre de Reynolds dans le cas

Exercice 20 page 28




d’une unigue échelle spatiale.

Notion d’écoulement parfait et de couche limite.

Exploiter I'absence de forces de viscosité et le
caractére isentropique de [I'évolution des
particules de fluide. Utiliser la condition aux
limites sur la composante normale du champ
des vitesses.

Relation de Bernoulli pour un écoulement
parfait, stationnaire, incompressible et
homogéne dans le champ de pesanteur
uniforme dans un référentiel galiléen.

Etablir et utiliser |a relation de Bernoulli
pour un écoulement parfait, stationnaire,
incompressible et homogene dans le
champ de pesanteur uniforme dans un
référentiel galiléen.

Cours M6

Exercice 26 page 31

Notions et contenus

Capacités exigibles

4.3.4 Bilans macroscopiques

Bilans de masse.

Etablir un bilan de masse en raisonnant sur un
systeme ouvert et fixe ou sur un systéme
fermé et mobile.

Bilans de quantité de mouvement ou d’énergie
cinétique pour un écoulement stationnaire
unidimensionnel a une entrée et une sortie.

Associer un systeme ferme a un systéme
ouvert pour faire un bilan.

Utiliser le théoreme de la quantité de
mouvement et le théoreme de I'énergie
cinétique pour réaliser un bilan.

Exploiter la nullité (admise) de la puissance
des forces intérieures dans un écoulement
parfait et incompressible.

Exercice 32 page 33

Electromagnétisme

Notions et contenus

Capacités exigibles

5.1 Sources du champ électromagnétique

5.1.1 Description microscopique et
mésoscopique des sources

Densité volumique de charges. Charge
traversant un élément de surface fixe et vecteur
densité de courant. Intensité du courant.

Exprimer la densité volumique de charge
et le vecteur densité de courant en
fonction de la vitesse moyenne des
porteurs de charge, de leur charge et de
leur densité volumique.

Relier I'intensité du courant et le flux du
vecteur densité de courant

5.2.1 Conservation de la charge

Equation locale de conservation de la charge.

Etablir 'équation traduisant la
conservation de la charge dans le seul cas
d’un probléeme unidimensionnel en
géométrie cartésienne.

Citer et utiliser une généralisation admise
en géométrie quelconque utilisant
I'operateur divergence, son expression
étant fournie.

Exploiter le caractere conservatif du
vecteur densité de courant en régime
stationnaire ; relier cette propriété a la loi
des nceuds de I'électrocinétique.

Exercice 3 page 34

5.2.3 Conduction
conducteur ohmique

électrique dans un

Loi d’'Ohm locale. Conductivité électrique.

Etablir 'expression de la conductivité
électrique a I'aide d’un modele
microscopique, I'action de I'agitation
thermique et des défauts du réseau étant
décrite par une force de frottement fluide
linéaire.

Discuter de l'influence de la fréquence sur
la conductivité électrique.

Etablir 'expression de la résistance d’une
portion de conducteur filiforme.

Effet Hall.

Interpréter qualitativement I'effet Hall dans
une géométrie parallélépipédique.

Effet thermique du courant électrique : loi de
Joule locale.

Exprimer la puissance volumique dissipée par
effet Joule dans un conducteur ochmique.

Exercice 10 page 39

Cours E4

Exercice 11 page 39




Notions et contenus

Capacités exigibles

5.2 Electrostatique

5.2.1 Champ électrostatique

Loi de Coulomb.

Champ et potentiel électrostatiques crées
par une charge ponctuelle. Principe de
superposition.

Exprimer le champ électrostatique et le
potentiel crées par une distribution
discréte de charges.

Citer quelques ordres de grandeur de
champs électrostatiques.

Exercice 4 page 35

Propriétés du champ électrostatique

Symétries.

Exploiter les propriétés de symétrie des
sources (translation, rotation, symétrie
plane, conjugaison de charges) pour
prévoir des propriétés du champ crée.

Circulation du champ électrostatique.
Potentiel électrostatique. Equations locales.

Relier I'existence d’un potentiel
électrostatique a la nullité du rotationnel
du vecteur champ électrostatique.
Justifier 'orthogonalité des lignes de
champ avec les surfaces équipotentielles
et leur orientation dans le sens des
potentiels décroissants.

Théoreme de Gauss et équation locale de
Maxwell-Gauss.

Choisir une surface adaptée et utiliser le
théoréme de Gauss.

Lignes de champ électrostatique.
Equipotentielles.

Justifier qu’une carte de lignes de champ
puisse ou non étre celle d’'un champ
électrostatique.

Repérer, sur une carte de champ
électrostatique, d’éventuelles sources du
champ et leur signe.

Associer I'évolution de la norme du champ
électrostatique a I'évasement des tubes de
champ loin des sources.

Relier équipotentielles et lignes de champ
électrostatique.

Evaluer la norme du champ électrostatique
a partir d’'un réseau de lignes
équipotentielles.

Cours E2

Exercice 5 page 35
Exercice 6 page 36

Exercice 4 page 35

5.2.2 Exemples de champs électrostatiques

Dipdle électrostatique. Moment dipolaire

Citer les conditions de I'approximation dipolaire.

Potentiel et champ créés par un dipble.

Etablir 'expression du potentiel V. Comparer la
décroissance avec la distance du champ et du
potentiel dans le cas d’'une charge ponctuelle et
dans le cas d’'un dipdle.

Tracer I'allure des lignes de champ
électrostatique engendrées par un dipdle.

Actions subies par un dip6le placé dans un
champ électrostatique d’origine extérieure
résultante et moment.

Utiliser les expressions fournies de la
résultante et du moment des actions
subies par un dipdle place dans un champ
électrostatique d’origine extérieure.

Energie potentielle d’'un dipdle rigide dans un
champ électrostatique d’origine extérieure.

Utiliser I'expression fournie de I'énergie
potentielle d’'un dipdle rigide dans un
champ électrostatique d’origine extérieure.
Prévoir qualitativement I'évolution d’'un
dipdle rigide dans un champ
électrostatique d’origine extérieure.

Interactions ion-molécule et molécule-molécule.

Expliquer qualitativement la solvatation des
ions dans un solvant polaire.

Dipdle induit. Polarisabilité.

Associer la polarisabilité et le volume de 'atome
en ordre de grandeur.

Cours E3

Exercice 8 page 37

Plan infini uniformément chargé en surface.

Etablir 'expression du champ créé par un
plan infini uniformément charge en surface.

Condensateur plan. Capacite.
Densité volumique d’énergie électrostatique.

Etablir 'expression du champ crée par un
condensateur plan.

Déterminer I'expression de la capacite
d’un condensateur plan.

Citer I'ordre de grandeur du champ
disruptif dans l'air.

Déterminer I'expression de la densité

Exercice 7 page 37




volumique d’énergie électrostatique dans
le cas du condensateur plan a partir de
celle de I'énergie du condensateur.

Energie de constitution d’'un noyau atomique
modeélisé par une boule uniformément
chargée.

Exprimer I'énergie de constitution d’un
noyau en construisant le noyau par
adjonction progressive de charges
apportées de l'infini.

Cours E3

5.2.3 Analogies avec le champ gravitationnel

Analogies entre champ électrostatique et champ
gravitationnel.

Utiliser les analogies entre les forces
électrostatique et gravitationnelle pour
déterminer I'expression de champs
gravitationnels.

Exercice 9 page 38

Notions et contenus

Capacités exigibles

5.3 Magnétostatique

5.3.1 Champ magnétostatique

Equations locales de la magnétostatique et
formes intégrales : flux conservatif et théoréme
d’Ampeére.

Choisir un contour, une surface et les orienter
pour appliquer le théoreme d’Ampeére.

Linéarité des équations.

Utiliser une méthode de superposition.

Exercice 18 page 43

Propriétés de symétrie.

Exploiter les propriétés de symétrie des
sources (rotation, symétrie plane) pour
prévoir des propriétés du champ crée.

Propriétés topographiques.

Justifier qu’'une carte de lignes de champ
puisse ou non étre celle d’'un champ
magnétostatique.

Repérer, sur une carte de champ
magnétostatique, d’éventuelles sources du
champ et leur sens.

Associer I'évolution de la norme d’'un champ
magnétique a I'évasement des tubes de
champ.

Exercice 16 page 42

5.3.2Exemples de champs magnétostatiques

Modeéle du cable rectiligne infini.

Déterminer le champ créé par un cable
rectiligne infini.

Solénoide long sans effets de bords.

Etablir et citer I'expression du champ a
l'intérieur d’'un solénoide long, la nullité du
champ extérieur étant admise.

Exercice 15 page 41

Exercice 13 page 41

Inductance propre. Etablir les expressions de 'inductance Cours E6
Densité volumique d’énergie magnétique. propre et de I'énergie d’'une bobine
modélisée par un solénoide long.
Associer I'énergie d’'une bobine a une
densité volumique d’énergie magnétique.
5.3.3 Dipoles magnétostatiques
Moment magnétique d’'une boucle de courant | Utiliser un modele planétaire pour relier le | Cours E7

plane.

moment magnétique d’un atome d’hydrogéne a
son moment cinétique.

Rapport  gyromagnétigue  de  [I'électron.
Magnéton de Bohr.

Construire en ordre de grandeur le
magnéton de Bohr par analyse
dimensionnelle.

Evaluer 'ordre de grandeur maximal du
moment magnétique volumique d’un aimant
permanent.

Actions subies par un dipble magnétique placé
dans un champ magnétostatique d’origine
extérieure : résultante et moment.

Utiliser les expressions fournies de la
résultante et du moment des actions subies
par un dipble magnétique place dans un
champ magnétostatique d’origine extérieure.
Décrire I'expérience de Stern et Gerlach et
expliquer ses enjeux.

Energie potentielle d’'un dipdle magnétique
rigide placé dans un champ magnétostatique
d’origine extérieure.

Utiliser I'expression fournie de I'énergie
potentielle d’'un dipdle rigide dans un
champ magnétostatique d’origine
extérieure.

Prévoir qualitativement I'évolution d’'un
dipdle rigide dans un champ
magnétostatique d’origine extérieure.

Exercice 19 page 43




Notions et contenus

Capacités exigibles

5.4 Equations de Maxwell

5.4.1 Postulats de I'électromagnétisme

Force de Lorentz. Equations locales de
Maxwell. Formes intégrales.

Utiliser les équations de Maxwell sous
forme locale ou intégrale.

Relier 'équation de Maxwell-Faraday et la
loi de Faraday.

Etablir 'équation locale de la conservation
de la charge a partir des équations de
Maxwell.

Utiliser une méthode de superposition.

Mettre en ceuvre un dispositif
expérimental utilisant des capteurs
inductifs..

Exercice 22 page 44

5.4.2 Aspects énergétiques

Vecteur de Poynting. Densit¢é volumique
d’énergie électromagnétique. Equation locale de
Poynting.

Utiliser les grandeurs énergétiques pour faire

des bilans d’énergie électromagnétique.

Associer le vecteur de Poynting et I'intensité

lumineuse utilisée en optique.

Exercice 23 page 45

5.4.3 Approximation des
stationnaires « magnétique »

régimes quasi-

Equations de propagation des champs
électrique et magnétique dans le vide.

Etablir les équations de propagation des
champs électrique et magnétique dans le
vide.

Expliquer le caractére non instantané des
interactions électromagnétiques.

ARQS magnétique

Discuter I'approximation des régimes quasi-

stationnaires.

Simplifier et utiliser les équations de
Maxwell et 'équation de conservation de la
charge dans I'approximation du régime
quasi-stationnaire.

Etendre le domaine de validité des
expressions des champs magnétiques
obtenues en régime stationnaire.

5.

Physique des ondes

Notions et contenus

Capacités exigibles

6.1 Phénoménes de propagation
dispersifs : équation de d’Alembert

non

6.1.1 Ondes mécaniques unidimensionnelles
dans les solides déformables

Ondes transversales sur une corde vibrante.

Etablir I'équation d’'onde décrivant les ondes
transversales sur une corde vibrante
infiniment souple dans I'approximation des
petits mouvements transverses.

Exercice 1 page 46

Domaine d’élasticité d’un solide : module
d’Young, loi de Hooke.

Exploiter le modelé de la chaine d’atomes
élastiquement lies pour relier le module
d’Young d’un solide élastique a ses
caractéristiques microscopiques.

Ondes mécaniques longitudinales dans une
tige solide dans I'approximation des milieux
continus.

Etablir 'équation d’onde décrivant les ondes
mécaniques longitudinales dans une tige
solide.

Exercice 2 page 46

Equation de d’Alembert ; célérité.

Identifier I'équation de d’Alembert.

Relier qualitativement la célérité d’ondes
mécaniques, la raideur et I'inertie du milieu
support.

Ondes progressives, ondes progressives
harmoniques ; ondes stationnaires.

Différencier une onde stationnaire d’'une
onde progressive.

Utiliser qualitativement I'analyse de Fourier
pour décrire une onde non harmonique.

Modes propres d’une corde vibrante fixée a
ses deux extremités.
Résonances d’'une corde de Melde.

Décrire les modes propres d’une corde
vibrante fixée a ses deux extrémités.
Interpréter quantitativement les résonances
observées avec la corde de Melde en
négligeant I'amortissement.

Exercice 6 page 47
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6.1.2 Ondes acoustiques dans les fluides

Approximation acoustique. Equation de
d’Alembert pour la surpression acoustique.

Classer les ondes acoustiques par domaines
fréquentiels.

Valider I'approximation acoustique.

Etablir, par une approche eulérienne,
I’équation de propagation de la surpression
acoustigue dans une situation
unidimensionnelle en coordonnées
cartésiennes.

Utiliser I'opérateur laplacien pour généraliser
I’équation d’onde.

Célérité des ondes acoustiques.

Exprimer la célérité des ondes acoustiques
en fonction de la température pour un gaz
parfait.

Cours Onde2

Ondes planes progressives harmoniques :
caractere longitudinal, impédance
acoustique.

Exploiter la notion d'impédance acoustique
pour faire le lien entre les champs de
surpression et de vitesse d’une onde plane
progressive harmonique.

Utiliser le principe de superposition des
ondes planes progressives harmoniques.

Exercice 7 page 48

Densité volumique d’énergie acoustique,
vecteur densité de courant énergétique.
Intensité sonore. Niveau d'intensité sonore.

Utiliser les expressions admises du vecteur
densité de courant énergétique et de la
densité volumique d’énergie associes a la
propagation de I'onde.

Citer quelques ordres de grandeur de
niveaux d’intensité sonore.

Exercice 9 page 48

Ondes acoustiques sphériques harmoniques.

Utiliser une expression fournie de la
surpression pour interpréter par un argument
énergétique la décroissance en 1/r de
I'amplitude.

Exercice 11 page 49

6.1.3 Ondes électromagnétiques dans le vide

Equations de propagation d’'un champ
électromagnétique dans une région sans
charge ni courant.

Etablir et citer les équations de propagation
d’'un champ électromagnétique dans le vide.

Structure  d'une  onde

harmonique.

plane  progressive

Etablir et exploiter la structure d’'une onde
électromagnétique plane progressive
harmonique.

Utiliser la superposition d’'ondes planes
progressives harmoniques pour justifier les
propriétés d’'ondes électromagnétiques
planes progressives non harmoniques..

Aspects énergétiques.

Relier la direction du vecteur de Poynting et
la direction de propagation de I'onde
électromagnétique.

Interpréter le flux du vecteur de Poynting en
termes particulaires.

Citer quelques ordres de grandeur de flux
énergétiques surfaciques moyens et les
relier aux ordres de grandeur des champs
électriques associes.

Polarisation des ondes électromagnétiques
planes progressives harmoniques :
polarisation elliptique, circulaire et rectiligne.
Loi de Malus.

Relier I'expression du champ électrique a
I’état de polarisation d’une onde.

Utiliser la loi de Malus.

Reconnaitre une lumiére polarisée
Rectilignement.

Distinguer une lumiére non polarisée
D’une lumiére totalement polarisée.
Utiliser une lame quart d’onde ou demi-
onde pour modifier ou analyser un état
de polarisation, avec de la lumiére
totalement polarisée.

Exercice 12 page 50

Exercice 14 page 50

Exercice 19 page 52
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6.2 Phénoménes de propagation linéaires
unidimensionnels

6.2.1 Dispersion et absorption

Propagation unidimensionnelle d’'une onde
harmonique dans un milieu linéaire.

Identifier le caractére linéaire d'une équation
aux dérivées partielles.

Etablir la relation de dispersion
caractéristique d’'un phénomeéne de
propagation en utilisant des ondes de la
forme expj(kx-wt).

Distinguer différents types de
comportements selon la valeur de la
pulsation.

Dispersion, absorption.

Associer les parties réelle et imaginaire de k
aux phénoménes de dispersion et
d’absorption.

Exercice 20 page 53

Propagation d’'un paquet d’ondes dans un
milieu non absorbant et faiblement dispersif :
vitesse de phase et vitesse de groupe.

Enoncer et exploiter la relation entre les
Ordres de grandeur de la durée temporelle
d’'un paquet d’'onde et la largeur
fréquentielle de son spectre.

Déterminer la vitesse de groupe d’'un
paquet d’'ondes a partir de la relation de
dispersion.

Associer la vitesse de groupe a la
propagation de I'enveloppe du paquet
d’'ondes.

Etudier la propagation d’une onde
électrique dans un cable coaxial.

Capacite numérique : a 'aide d’'un langage
de programmation, simuler la propagation
d’'un paquet d’'ondes dans un milieu
dispersif et visualiser le phénoméne

Exercice 22 page 54

TP 13

6.2.2 Ondes électromagnétiques dans les
milieux matériels

Propagation d’'une onde électromagnétique
plane harmonique unidirectionnelle dans un
conducteur ohmique de conductivité réelle.
Effet de peau dans un conducteur ochmique.

Identifier une analogie avec un phénoméne
de diffusion.

Etablir la relation de dispersion des ondes
électromagnétiques dans un conducteur
ohmique a basses fréquences.

Associer I'atténuation de I'onde dans le
milieu conducteur a une dissipation
d’énergie.

Estimer 'ordre de grandeur de I'épaisseur
de peau du cuivre a différentes fréguences.

Cours Onde5

Propagation d’une onde électromagnétique
plane harmonique transverse et
unidirectionnelle dans un plasma dilue.
Conductivité électrique complexe.

Justifier la neutralité électrique locale du
plasma en présence d’une onde transverse.
Etablir 'expression de la conductivité
électriqgue complexe du plasma.

Interpréter énergétiquement le caractere
imaginaire pur de la conductivité électrique
complexe du plasma.

Relation de dispersion. Pulsation plasma.
Domaine de transparence.
Domaine réactif, onde évanescente.

Etablir la relation de dispersion des ondes
planes progressives harmoniques
transverses.

Exprimer la vitesse de phase et la vitesse
de groupe d’'un paquet d’'ondes dans le
domaine de transparence du plasma.
Interpréter la pulsation plasma comme une
pulsation de coupure.

Citer les caractéristiques d’'une onde
stationnaire évanescente.

Justifier que, dans le domaine réactif, une
onde électromagnétique harmonique ne
transporte aucune puissance en moyenne.

Cours Onde5
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6.3 Interfaces entre deux milieux

Réflexion, transmission d'une onde
acoustique plane progressive sous incidence
normale sur une interface plane infinie entre
deux fluides : coefficients de réflexion et de
transmission en amplitude des vitesses, des
surpressions et des puissances acoustiques
surfaciqgues moyennes.

Expliciter des conditions aux limites a une
interface.

Etablir les expressions des coefficients de
transmission et de réflexion.

Associer l'adaptation des impédances au
transfert maximum de puissance.

Exercice 28 page 57

Reéflexion et transmission d’'une onde
électromagnétique plane progressive
harmonique polarisée rectilignement a
l'interface entre deux milieux d’indices
complexes n1 et n2 dans le cas d’une
incidence normale : coefficients de réflexion
et de transmission du champ électrique.

Exploiter la continuité admise du champ
électromagnétique dans cette configuration
pour obtenir I'expression des coefficients de
réflexion et de transmission en fonction des
indices complexes.

Utiliser les expressions des coefficients de
réflexion et de transmission du champ
électrique dans des situations variées.
Etablir et interpréter les expressions des
coefficients de réflexion et de transmission
en puissance dans le cas d'une interface

Exercice 30 page 58

6.4 Introduction a la physique du laser

6.4.1 Milieu amplificateur de lumiére

Absorption, émission stimulée, émission
spontanée.

Distinguer les propriétés d’'un photon émis
par émission spontanée ou stimulée.

Coefficients d’Einstein.

Associer I'émission spontanée a la durée de
vie d’un niveau excite.

Utiliser les coefficients d’Einstein dans le cas
d’un systéme a plusieurs niveaux non
dégénérés.

Amplification d’ondes lumineuses par
émission stimulée.

Justifier qualitativement la nécessité d’'une
inversion de population pour parvenir a
amplifier une onde électromagnétique dans
un laser.

Exercice 33 page 60

6.4.2 Propriétés optiques d’'un faisceau
spatialement limité

Description simplifiée d’un faisceau de
profil gaussien : waist, longueur de
Rayleigh, ouverture angulaire.

Justifier qualitativement I'inadéquation du
modéle de I'onde plane pour décrire un
faisceau laser.

Utiliser I'expression fournie du profil radial
d'intensité.

Construire I'allure d’un faisceau de profil
gaussien a partir de I'enveloppe d’'un
faisceau cylindrique et d'un faisceau
conique.

Exploiter qualitativement le phénomene de
diffraction pour relier le waist et I'ouverture
angulaire du faisceau a grande distance.

Transformation a I'aide d’une lentille d’'un
faisceau cylindrique en faisceau conique et
réciproquement.

Elargisseur de faisceau.

Déterminer la dimension et la position de la
section minimale du faisceau émergeant
d’une lentille éclairée par un faisceau
cylindrique.

Exercice 31 page 59

Exercice 32 page 59

6.5 Approche ondulatoire de la mécanique

quantique

6.5.1 Amplitude de probabilité

Fonction d’'onde y(x,t) associée a une
particule dans un probléme
unidimensionnel. Densité linéique de
probabilité de présence.

Normaliser une fonction d’onde.
Relier qualitativement la fonction d’'onde a la
notion d’orbitale en chimie.

Principe de superposition. Interférences.

Relier la superposition de fonctions d’'ondes
a la description d’'une expérience
d’interférences entre particules.

Exercice 35 page 61

6.5.2 Equation de Schrédinger pour une

particule libre

Equation de Schrédinger.

Utiliser I'équation de Schrédinger fournie.

Etats stationnaires.

Associer les états stationnaires aux états
d’énergie déterminée.

Etablir et utiliser la forme

w(x,t) = d(x) exp(-iEt/h) pour la fonction
d’onde d’un état stationnaire et I'associer a la
relation de Planck-Einstein.

Cours Onde8
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Paquet d’'ondes associe a une particule
libre. Relation Akx Ax = 1/2.

Distinguer 'onde associée a un état
stationnaire en mécanique quantique d’une
onde stationnaire au sens usuel de la
physique des ondes.

Utiliser I'équation de Schrodinger pour
déterminer la partie spatiale ¢(x) des
fonctions d’'onde stationnaires décrivant une
particule libre.

Identifier la vitesse d’une particule libre et la
vitesse du paquet d’ondes la décrivant.
Exploiter I'inégalité de Heisenberg pour relier
I’étendue spatiale et I'étendue spectrale du
paquet d’'ondes décrivant une particule libre.

Courant de probabilité associé a une particule
libre

Utiliser I'expression admise du courant de
probabilité associe a une particule libre et
l'interpréter comme un produit
densité*vitesse.

Exercice 36 page 61

6.5.3 Equation de Schrédinger dans un
potentiel V(x) uniforme par morceaux

Quantification de I'énergie dans un puits de
potentiel rectangulaire de profondeur infinie.

Etablir les expressions des énergies des états
stationnaires.

Retrouver qualitativement I'énergie minimale a
partir de I'inégalité de Heisenberg.

Energie de confinement quantique.

Associer le confinement d'une particule
quantique a une augmentation de I'énergie
cinétique.

Exercice 37 page 62

Evolution temporelle d’'une particule confinée
dans une superposition d’états.

Mettre en évidence les oscillations d’'une
particule dont la fonction d’'onde s’écrit
comme la superposition de deux états
stationnaires et relier la fréquence
d'oscillation a la différence des énergies.

Exercice 38 page 62

Quantification de I'énergie des états liés dans un
puits de profondeur finie.

Elargissement effectif du puits par les ondes
évanescentes.

Décrire la forme des fonctions d’'onde
dans les différents domaines.

Utiliser les conditions aux limites
admises : continuité de ¢ et d¢/dx.
Associer la quantification de I'énergie au
caractere lie de la particule.

Mener une discussion graphique.
Interpréter qualitativement, a partir de
I'inégalité de Heisenberg spatiale,
I’abaissement des niveaux d’énergie par
rapport au puits de profondeur infinie.

6.5.4 Effet tunnel

Effet tunnel.

Coefficient de transmission associé a une
particule libre incidente sur une barriére de
potentiel.

Citer quelques applications de I'effet tunnel.
Définir le coefficient de transmission comme
un rapport de courants de probabilités.
Utiliser une expression fournie du coefficient
de transmission a travers une barriére de
potentiel.

Exercice 40 page 63
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SANS OUBLIER :

» Connaitre parfaitement et savoir utiliser les coordonnées sphériques et cylindriques.

» Connaitre parfaitement et savoir utiliser les opérateurs de I’analyse vectorielle en coordonnées cartésiennes :

. ~ T, A 0A A
- gradU:DU:a_Uﬁx +a_Uﬁy +6_Uﬁz - divA=[0.A= 9 X+ Y +a Z
0x dy 0z 0x dy 0z
— . . ~ 2 2 2
- rotA=00A - AU:DzU:512J+512J 6I2j
0x dy 0z
_ - Oy 0 0 0
- DA =DAG, +AAT, +AA,T, - (Agad)=(AD)=A, —+A, —+A, —
0x dy 0z

 Connaitre parfaitement les équations différentielles classiques dont on peut donner directement la solution :

d*f

- ——+k’f=0 desolution: f(x)=acos(kx)+Bsin(kx) ou f(x)= Acos(kx+d)
dx?
a’f .
- —5~kf=0 desolution: f(x)=ach(kx) + Bsh(kx) ou  f(x) = Aexp(kx) + Bexp(-kx)
dx
. daf +£ =0 de solution :  f(x) = Aexp(-x/d)
dx o
oAt _f_ 0 de solution :  f(x) = Aexp(x/d)
dx o
d>f

- d—2+2A:—f+k2f =0 de solution f(x) = exp(-Ax)[A exp(—VAZ =k2x)+Bexp(VAZ =k>x)] si A>k
X X
f(x) = exp(-Ax)[A cos(Vk> =A% x) +Bsin(Wk2 =A>x)]  si k>A
f(x) =exp(-Ax)[A+Bx] siA=k

Attention : La variable n’est pas toujours x, mais souvent t. Dans ce cas on utilise plut6t la notation w a la
place de k et la notation T a la place de .

Attention : S’il y a un second membre constant, on rajoute une solution particuliére constante.
S’il y a un second membre sinusoidal, on rajoute une solution particuliére sinusoidale que I’on
recherche, en général, en notation complexe

* Connaitre le principe de I’analyse de Fourier : décomposition d’un signal en une somme, discréte ou continue,
de fonctions sinusoidales

Un signal s(t) prenant des valeurs notables sur un intervalle de largeur At a un spectre de Fourier qui prend
des valeurs notables sur un intervalle de largeur en fréquence Af.

On a la relation de Fourier : |Af.At=1
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