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GUIDE DE REVISION 2026 

 

 
En jaune sont surlignées les questions de cours classiques à connaître parfaitement. 

 
 

1. Optique 
 

Notions et contenus Capacités exigibles  
1.1 Modèle scalaire des ondes lumineuses   
Modèle de propagation dans 
l’approximation de l’optique géométrique. 

Vibration lumineuse. 
 
--------------------------------------------------------------- 
Chemin optique. Déphasage du a la 
Propagation 
 
---------------------------------------------------------------- 
Surfaces d’ondes. Théorème de Malus. 
Onde plane, onde sphérique ; effet d’une 
lentille mince dans l’approximation de Gauss. 

 
 
 
Associer la grandeur scalaire de l’optique à 
une composante d’un champ électrique. 
-------------------------------------------------------------- 
Exprimer le retard de phase en un point en  
fonction du retard de propagation ou du 
chemin optique. 
-------------------------------------------------------------- 
Utiliser l’égalité des chemins optiques sur les 
rayons d’un point objet à son image. 
Associer une description de la formation des 
images en termes de rayon lumineux et en 
termes de surfaces d’onde..  

 
 
 
Cours O1                                  
                                                           
 
Exercice 1 page 1                                      
 
 
 
Exercice 2 page 1 
 
                                                 
                       

Modèle d’émission. 

Largeur spectrale. Cohérence temporelle. 

 
Classer différentes sources lumineuses 
(lampe spectrale basse pression, laser, 
source de lumière blanche…) en fonction du 
temps de cohérence de leurs diverses 
radiations. 
Citer quelques ordres de grandeur des 
longueurs de cohérence temporelle 
associées a différentes sources. 
Relier, en ordre de grandeur, le temps de 
cohérence et la largeur spectrale de la 
radiation considérée. 
 

 
Cours O1 
 
 
 
 
 
 
 
Exercice 3 page 1                                              
 
 

Réception d’une onde lumineuse. 

Récepteurs. Intensité lumineuse. 

 
Comparer le temps de réponse d’un 
récepteur usuel (œil, photodiode, capteur 
CCD) aux temps caractéristiques des 
vibrations lumineuses. 
Relier l’intensité lumineuse a la moyenne 
temporelle du carre de la grandeur scalaire 
de l’optique. 
 
Mettre en œuvre un capteur optique 

 
Cours O1 
 
 
 
 
 
 
 
TP 4 

 

Notions et contenus Capacités exigibles  
1.2 Superposition d’ondes lumineuses   
Superposition de deux ondes quasi-
monochromatiques non synchrones ou 
Incohérentes entre elles. 
--------------------------------------------------------------- 
Superposition de deux ondes quasi-
monochromatiques cohérentes entre elles : 
formule de Fresnel   
---------------------------------------------------------------- 
Contraste 
 
---------------------------------------------------------------- 
Superposition de N ondes quasi-
monochromatiques cohérentes entre elles, de 
même amplitude et dont les phases sont en 
progression arithmétique dans le cas N>>1. 

Justifier et utiliser l’additivité des intensités. 
 
 
--------------------------------------------------------------- 
Etablir la formule de Fresnel. 
Identifier une situation de cohérence entre 
deux ondes et utiliser la formule de Fresnel. 
--------------------------------------------------------------- 
Associer un bon contraste a des ondes 
d’intensités voisines. 
--------------------------------------------------------------- 
Expliquer qualitativement l’influence de N 
sur l’intensité et la finesse des franges 
brillantes observées. 
Etablir, par le calcul, la condition 
d’interférences constructives et la demi largeur 
2π/N des franges brillantes. 
Etablir et utiliser la formule indiquant la 
direction des maxima d’intensité derrière un 
réseau de fentes rectilignes parallèles. 

Cours O2 
 
 
 
Exercice 4 page 2 
 
 
 
 
 
 
Cours O5 
 
 
Exercice 20 page 9 
 
 
Exercice 20 page 9 
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Notions et contenus Capacités exigibles  
1.3 Exemple de dispositif interférentiel par 
division du front d’onde : trous d’Young  

  

Dispositif-modèle des trous d’Young 
ponctuels dans un milieu non dispersif 
(source ponctuelle à grande distance 
finie ; observation à grande distance 
finie). 
 
Champ d’interférences. Ordre 
d’interférences. 
----------------------------------------------------------------- 
Franges d’interférences. 

 
 
 
 
 
 
Définir, déterminer et utiliser l’ordre 
d’interférences. 
------------------------------------------------------------- 

Justifier la forme des franges observées sur 
un écran éloigne parallèle au plan contenant 
les trous d’Young. 

 
 
 
                                                              
 
 
Exercice 6 page 3 
                                                                      

Du dispositif-modèle au dispositif réel. 
 
Fentes d’Young. 
Montage de Fraunhofer. 
 
 
 
 
 
 
--------------------------------------------------------------- 
Perte de contraste par élargissement spatial 
de la source. 
 
 
---------------------------------------------------------------- 
Perte de contraste par élargissement 
spectral de la source. 
 
 
 
 
 
----------------------------------------------------------------- 
Observations en lumière blanche (blanc 
d’ordre supérieur, spectre cannelé). 

 
 
Identifier l’effet de la diffraction sur la figure 
observée. 
Expliquer l’intérêt pratique du dispositif des 
fentes d’Young comparativement aux trous 
d’Young. 
Exprimer l’ordre d’interférences sur l’écran 
dans le cas d’un dispositif des fentes d’Young 
utilisé en configuration de Fraunhofer 
------------------------------------------------------------- 
Utiliser un critère semi-quantitatif de 
brouillage des franges portant sur l’ordre 
d’interférences pour interpréter des 
observations expérimentales. 
------------------------------------------------------------- 
Utiliser un critère semi-quantitatif de 
brouillage des franges portant sur l’ordre 
d’interférences pour interpréter des 
observations expérimentales. 
Relier la longueur de cohérence temporelle, 
la largeur spectrale et la longueur d’onde en 
ordres de grandeur. 
------------------------------------------------------------- 
Déterminer les longueurs d‘ondes des 
cannelures. 

 
 
Exercice 7 page 3 
 
 
 
 
 
 
 
 
Exercice 9 page 4 
 
 
 
 
Exercice 10 page 5 
 
 
 
 
 
 
 
Exercice 16 page 8 
 

 
Notions et contenus Capacités exigibles  

1.4 Exemple de dispositif interférentiel par 
division d’amplitude : interféromètre de 
Michelson 

  

Interféromètre de Michelson équivalent à 
une lame d’air éclairée par une source 
spatialement étendue. 
 
Localisation des franges. Franges d’égale 
inclinaison. 

 

 

 

 

Justifier les conditions d’observation des 
franges d’égale inclinaison, le lieu de 
localisation des franges étant admis. 
Etablir et utiliser l’expression de l’ordre 
d’interférences en fonction de l’épaisseur 
de la lame, l’angle d’incidence et la 
longueur d’onde. 
 
Décrire et mettre en œuvre les 
conditions d’éclairage et d’observation 
adaptées à l’utilisation d’un 
interféromètre de Michelson en lame 
d’air. 
Mesurer l’écart en longueur d’onde 
d’un doublet et la longueur de 
cohérence d’une radiation. 
Interpréter des observations faites en 
lumière blanche avec l’interféromètre 
de Michelson en configuration lame 
d’air. 

 
 
 
                                                                          
Exercice 12 page 6 

 
 

Exercice 13 page 6 
 
 
 
 

TP 6 
 
 
 
 
Exercice 15 page 7  

Interféromètre de Michelson équivalent à 
un coin d’air éclairé par une source 
spatialement étendue. 
 
Localisation des franges. Franges d’égale 
épaisseur. 

 

 

 

 

Justifier les conditions d’observation des 
franges d’égale épaisseur, le lieu de 

 
 
 
 
Exercice 17 page 8 
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localisation des franges étant admis. 
Utiliser l’expression donnée de la différence 
de marche en fonction de l’épaisseur pour 
exprimer l’ordre d’interférences. 
 
Décrire et mettre en œuvre les 
conditions d’éclairage et d’observation 
adaptées à l’utilisation d’un 
interféromètre de Michelson en coin 
d’air. 
Caractériser la géométrie d’un objet ou 
l’indice d’un milieu à l’aide d’un 
interféromètre de Michelson. 
Interpréter des observations faites en 
lumière blanche avec l’interféromètre 

 
 
 
 
 
TP 7 
 
 
 
 
Exercice 18 page 8 
 

 
 
 

2.  Électronique 
 
 

Notions et contenus Capacités exigibles  
Production, acquisition et traitement d’un 
signal électrique. 
 
Oscillateur quasi-sinusoïdal réalise en 
bouclant un filtre passe-bande du deuxième 
ordre avec un amplificateur. 
---------------------------------------------------------------- 
Echantillonnage. 
 
---------------------------------------------------------------- 
Condition de Nyquist-Shannon 
 
 
 
 
--------------------------------------------------------------- 
Détection synchrone. 

 
 
 
Mettre en œuvre un oscillateur quasi 
sinusoïdal et analyser les spectres des 
signaux générés. 
--------------------------------------------------------------- 
Expliquer l’influence de la fréquence 
d’échantillonnage. 
--------------------------------------------------------------- 
Utiliser la condition de Nyquist-Shannon. 
Mettre en évidence le phénomène de 
repliement de spectre au moyen d’un 
oscilloscope numérique ou d’une 
acquisition numérique. 
--------------------------------------------------------------- 
Mettre en œuvre un protocole de 
détection synchrone. 

 
 
 
TP 9 
Exercice 2 page 11 
 
 
 
TP 1 
 
 
Exercice 1 page 11 
TP 1 
 
 
 
 
TP 14 

 
 
 
 

3. Thermodynamique 
 

Notions et contenus Capacités exigibles  
3.1 Systèmes ouverts en régime stationnaire   
Premier et deuxième principes de la 
thermodynamique pour un système ouvert en 
régime stationnaire, dans le seul cas d’un 
écoulement unidimensionnel dans la section 
d’entrée et la section de sortie.  

Établir les relations ∆h+∆e= wu+q et ∆s=se+sc 
et les utiliser pour étudier des machines 
thermiques réelles à l’aide de diagrammes 
thermodynamiques (T,s) et (P,h). 
 

Exercice 4 page 13 

 
 

Notions et contenus Capacités exigibles  
3.2 Diffusion de particules   
Vecteur densité de flux de particules jN. 
 
---------------------------------------------------------------- 
Bilans de particules. 
 
 
 
 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Loi de Fick. 
 
 

Exprimer le flux de particules traversant une 
surface orientée en utilisant le vecteur  jN 

-------------------------------------------------------------- 
Utiliser la notion de flux pour traduire un 
bilan global de particules. 
Etablir l’équation locale traduisant un bilan 
de particules dans le cas d’un problème ne 
dépendant qu’une d’une seule coordonnée 
d’espace en coordonnées cartésiennes, 
cylindriques et sphériques, éventuellement 
en présence de sources internes. 
Utiliser l’operateur divergence et son 
expression fournie pour exprimer le bilan 
local de particules dans le cas d’une 
géométrie quelconque. 
-------------------------------------------------------------- 
Utiliser la loi de Fick. Citer l’ordre de grandeur 
d’un coefficient de diffusion dans un gaz dans 
les conditions usuelles. 

Cours T2 
 
 
Exercice 5 page 15 
 
Exercice 7 page 16 
 
 
 
 
 
 
 
 
 
 
Cours T2 
 
 



 

4 

 

 
Régimes stationnaires. 
 
 
---------------------------------------------------------------- 
Équation de diffusion en l’absence de sources 
internes. 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Approche microscopique du phénomène de 
diffusion. 
 
 
 

 
Utiliser, en régime stationnaire, la 
conservation du flux sous forme locale ou 
globale en l’absence de sources internes. 
-------------------------------------------------------------- 
Etablir l’équation de la diffusion en 
l’absence de sources internes. 
Utiliser l’opérateur laplacien et son 
expression fournie pour écrire l’équation de 
diffusion dans le cas d’une géométrie 
quelconque. 
Analyser une équation de diffusion en 
ordres de grandeur pour relier des échelles 
caractéristiques spatiale et temporelle. 
-------------------------------------------------------------- 
Mettre en place un modèle probabiliste discret 
à une dimension de la diffusion (marche au 
hasard) et évaluer le coefficient de diffusion 
associé en fonction du libre parcours moyen et 
de la vitesse quadratique moyenne. 
 
Capacite numérique : a l’aide d’un langage 
de programmation, simuler la marche au 
hasard d’un grand nombre de particules a 
partir d’un centre et caractériser l’étalement 
spatial de cet ensemble de particules au 
cours du temps. 

 
Exercice 8 page 16 
 
 
 
Cours T2 
 
 
 
 
 
 
 
 
 
Cours T2 

 
 

Notions et contenus Capacités exigibles  
3.3 Diffusion thermique   
Vecteur densité de flux thermique jQ 

 

---------------------------------------------------------------- 
Premier principe de la thermodynamique. 
 
 
 
 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Loi de Fourier. 
 
 
---------------------------------------------------------------- 
Régimes stationnaires. Résistance thermique. 
 
 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Équation de la diffusion thermique 
 

Exprimer le flux thermique à travers une 
surface orientée en utilisant le vecteur jQ. 
-------------------------------------------------------------- 

Etablir, pour un milieu solide, l’équation 
locale traduisant le premier principe dans 
le cas d’un problème ne dépendant qu’une 
d’une seule coordonnée d’espace en 
coordonnées cartésiennes, cylindriques et 
sphériques, éventuellement en présence 
de sources internes. 
Utiliser l’opérateur divergence et son 
expression fournie pour exprimer le bilan 
local dans le cas d’une géométrie 
quelconque, éventuellement en présence de 
sources internes. 
--------------------------------------------------------------- 

Utiliser la loi de Fourier. Citer quelques ordres 
de grandeur de conductivité thermique dans les 
conditions usuelles : air, eau, béton, acier 
--------------------------------------------------------------- 

Utiliser la conservation du flux thermique 
sous forme locale ou globale en l’absence 
de source interne. 
Définir la notion de résistance thermique par 
analogie avec l’électrocinétique. 
Etablir l’expression d’une résistance 
thermique dans le cas d’un modèle 
unidimensionnel. 
Utiliser les lois d’associations de résistances 
thermiques. 
---------------------------------------------------------------- 

Etablir une équation de diffusion thermique. 
Utiliser l’opérateur laplacien et son 
expression fournie pour écrire l’équation de 
diffusion dans le cas d’une géométrie 
quelconque. 
Analyser une équation de diffusion en 
ordres de grandeur pour relier des échelles 
caractéristiques spatiale et temporelle. 
Utiliser la loi de Newton fournie comme 
Condition aux limites à une interface 
solide/fluide. 
 
Capacite numérique : à l’aide d’un langage 
de programmation, résoudre l’équation de la 
diffusion thermique a une dimension par 
une méthode des différences finies dérivée 

Cours T3 
 
 
Exercice 9 page 17 
 
 
 
 
 
 
 
 
 
 
 
 
Cours T3 
 
 
 
 
 
 
 
 
 
 
 
Exercice 13 page 19 
 
 
Exercice 10 page 17 
 
 
 
 
Exercice 14 page 19 
 
 
 
Exercice 11 page 18 
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de la méthode d’Euler explicite de résolution 
des équations différentielles ordinaires. 
 
Mettre en œuvre un dispositif 
expérimental utilisant une caméra 
thermique ou un capteur dans le 
domaine des infrarouges. 

 
 
 
TP 17 
 

 
 

Notions et contenus Capacités exigibles  
3.3 Rayonnement thermique   
Approche descriptive du rayonnement du 
corps noir. 
Loi de Wien, loi de Stefan. 
Effet de serre. Albedo 

Exploiter les expressions fournies des lois de 
Wien et de Stefan. 
Analyser quantitativement l’effet de serre en 
s’appuyant sur un bilan énergétique dans le 
cadre d’un modèle a une couche. 

Exercice 15 page 20 

 
 

4. Mécanique 
 

Notions et contenus Capacités exigibles  
4.1 Changements de référentiel    
Référentiel en translation rectiligne uniforme 
par rapport à un autre : transformation de 
Galilée, composition des vitesses. 
 
---------------------------------------------------------------- 
Composition des vitesses et des 
accélérations dans le cas d’un référentiel en 
translation par rapport à un autre : point 
coïncident, vitesse d’entrainement, 
accélération d’entrainement. 
----------------------------------------------------------------- 
Composition des vitesses et des accélérations 
dans le cas d’un référentiel en rotation 
uniforme autour d’un axe fixe : point 
coïncident, vitesse d’entrainement, 
accélération d’entrainement, acceleration de 
Coriolis. 

Relier la transformation de Galilée et la 
formule de composition des vitesses a la 
relation de Chasles et au caractère 
suppose absolu du temps. 
-------------------------------------------------------------- 

Exprimer la vitesse d’entrainement et 
l’accélération d’entrainement. 
 
 
 
--------------------------------------------------------------- 
Exprimer la vitesse d’entrainement et 
l’accélération d’entrainement. 
Citer et utiliser l’expression de l’accélération 
de Coriolis. 

Cours M1 
 
 
 
 
Exercice 1 page 21 
 
 
 
 
 
Exercice 2 page 21 

 
Notions et contenus Capacités exigibles  

4.2 Dynamique dans un référentiel non 
galiléen 

  

Cas d’un référentiel en translation par rapport à 
un référentiel galiléen : force d’inertie 
d’entrainement 

Déterminer la force d’inertie d’entraînement. 
Appliquer la loi de la quantité de mouvement, 
la loi du moment cinétique et la loi de l’énergie 
cinétique dans un référentiel non galiléen. 

Exercice 4 page 22 

Cas d’un référentiel en rotation uniforme autour 
d’un axe fixe dans un référentiel galiléen : force 
d’inertie d’entraînement, force d’inertie de 
Coriolis. 

Exprimer la force d’inertie d’entrainement et la 
force d’inertie de Coriolis. 
Associer la force d’inertie d’entrainement 
axifuge a l’expression familière ≪ force 
centrifuge ≫. 
Appliquer la deuxième loi de Newton, le 
théorème du moment cinétique et le théorème 
de l’énergie cinétique dans un référentiel non 
galiléen. 

Exercice 6 page 23 

Champ de pesanteur : définition, évolution 
qualitative avec la latitude, ordres de grandeur  

 
 
 
 
---------------------------------------------------------------- 
Equilibre d’un fluide dans un référentiel non 
galiléen en translation ou en rotation uniforme 
autour d’un axe fixe dans un référentiel galiléen. 

Distinguer le champ de pesanteur et le champ 
gravitationnel. 
 
Capacite numérique : à l’aide d’un langage de 
programmation, illustrer un effet lie au 
caractère non galiléen du référentiel terrestre 
--------------------------------------------------------------- 
Établir et utiliser l’expression de la force 
d’inertie d’entraînement volumique. 
 
 
. 
 

Cours M2 
 
 

Exercice 10 page 24 
 
 
 
Cours M2 
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Notions et contenus Capacités exigibles  

4.3 Mécanique des fluides   
4.3.1 Description d’un fluide en mouvement   
Champ eulérien des vitesses. Lignes de champ. 
Tubes de champ. 

Définir et utiliser l’approche eulérienne. 
 

Cours M3 

Écoulement stationnaire. Discuter du caractère stationnaire d’un 
écoulement en fonction du référentiel 
d’étude. 

 

Dérivée particulaire de la masse volumique. 
Écoulement incompressible. 

Etablir l’expression de la dérivée 
particulaire de la masse volumique. 
Utiliser l’expression de la dérivée 
particulaire de la masse volumique pour 
caractériser un écoulement 
incompressible.. 

Cours M3 

Débit massique. Débit volumique. 
 
 
 
 
 
---------------------------------------------------------------- 
Équation locale de conservation de la masse. 
 
 
 
 
 
 
 

Définir le débit massique et l’écrire comme 
le flux du vecteur densité de courant de 
masse à travers une surface orientée. 
Définir le débit volumique et l’écrire comme 
le flux du champ de vitesse à travers une 
surface orientée. 
--------------------------------------------------------------- 
Etablir l’équation locale de conservation de 
la masse dans le seul cas d’un problème 
unidimensionnel en géométrie cartésienne. 
Citer et utiliser une généralisation admise 
en géométrie quelconque a l’aide de 
l’opérateur divergence et son expression 
fournie. 

Exercice 11 page 25 
 
 
 
 
 
 
Exercice 12 page 25 

Caractérisation d’un écoulement incompressible 
par la divergence du champ des vitesses. 

Traduire localement, en fonction du champ 
de vitesses, le caractère incompressible 
d’un écoulement. 

Exercice 11 page 25 

Dérivée particulaire du vecteur-vitesse : terme 
local ; terme convectif. 

Associer la dérivée particulaire de la 
vitesse a l’accélération de la particule de 
fluide qui passe en un point. 
Utiliser l’expression de l’accélération avec le 
terme convectif sous la forme v.grad v. 
Utiliser l'expression fournie de  l'accélération 
convective en fonction de grad (v2/2) et rot v x 
v. 

Exercice 12 page 25 

Ecoulement irrotationnel défini par la nullité 
du rotationnel du champ des vitesses en tout 
point ; potentiel des vitesses.  

Traduire localement, en fonction du champ 
de vitesses, le caractère irrotationnel d’un 
écoulement et en déduire l’existence d’un 
potentiel des vitesses. 

Exercice 15 page 26 

 
Notions et contenus Capacités exigibles  

4.3.2 Actions de contact dans un fluide en 
mouvement 

  

Forces de pression. Équivalent volumique. Exprimer la force de pression exercée par 
un fluide sur une surface élémentaire. 
Exprimer l’équivalent volumique des forces 
de pression à l’aide d’un gradient. 

Exercice 17 page 27 

Contraintes tangentielles dans un écoulement 
v= vx(y) ux au sein d’un fluide newtonien ; 
viscosité. 
---------------------------------------------------------------- 
Équivalent volumique des forces de viscosité 
dans un écoulement incompressible. 

Utiliser l’expression fournie dF=η∂vx/∂y dSux 
 
 
-------------------------------------------------------------- 
Etablir l’expression de l’équivalent 
volumique des forces de viscosité dans le 
cas d’un écoulement de cisaillement a une 
dimension et utiliser sa généralisation 
admise pour un écoulement incompressible 
quelconque. 

Cours M4 

Traînée d’une sphère solide en mouvement 
rectiligne uniforme dans un fluide newtonien : 
nombre de Reynolds ; coefficient de traînée 
Cx ; graphe de Cx en fonction du nombre de 
Reynolds. 

Évaluer un nombre de Reynolds pour choisir 
un modèle de traînée linéaire ou un modèle de 
traînée quadratique. 

 

 
Notions et contenus Capacités exigibles  

4.3.3 Équations dynamiques locales   
Équation de Navier-Stokes dans un fluide 
newtonien en écoulement incompressible. 
Terme convectif. Terme diffusif. Nombre de 
Reynolds dans le cas d’une unique échelle 
spatiale. 

Utiliser l’équation de Navier-Stokes dans un 
fluide newtonien en écoulement 
incompressible. 
Evaluer en ordre de grandeur le rapport du 
terme convectif sur le terme diffusif et le 
relier au nombre de Reynolds dans le cas 

Exercice 20 page 28 
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d’une unique échelle spatiale. 
Notion d’écoulement parfait et de couche limite. 
 
 
 
 
---------------------------------------------------------------- 
Relation de Bernoulli pour un écoulement 
parfait, stationnaire, incompressible et 
homogène dans le champ de pesanteur 
uniforme dans un référentiel galiléen. 
 

Exploiter l’absence de forces de viscosité et le 
caractère isentropique de l’évolution des 
particules de fluide. Utiliser la condition aux 
limites sur la composante normale du champ 
des vitesses. 
--------------------------------------------------------------- 

Etablir et utiliser la relation de Bernoulli 
pour un écoulement parfait, stationnaire, 
incompressible et homogène dans le 
champ de pesanteur uniforme dans un 
référentiel galiléen. 

Cours M6 
 
 
 
 
 
Exercice 26 page 31 

 
Notions et contenus Capacités exigibles  

4.3.4 Bilans macroscopiques   
Bilans de masse. Établir un bilan de masse en raisonnant sur un 

système ouvert et fixe ou sur un système 
fermé et mobile.  

 

Bilans de quantité de mouvement ou d’énergie 
cinétique pour un écoulement stationnaire 
unidimensionnel à une entrée et une sortie. 
 
 

Associer un système ferme a un système 
ouvert pour faire un bilan. 
Utiliser le théorème de la quantité de 
mouvement et le théorème de l’énergie 
cinétique pour réaliser un bilan. 
Exploiter la nullité (admise) de la puissance 
des forces intérieures dans un écoulement 
parfait et incompressible. 

Exercice 32 page 33 

 
 
 
 
 
 

4. Électromagnétisme 
 

Notions et contenus Capacités exigibles  
5.1 Sources du champ électromagnétique   
5.1.1 Description microscopique et 
mésoscopique des sources 

  

Densité volumique de charges. Charge 
traversant un élément de surface fixe et vecteur 
densité de courant. Intensité du courant.  
 

Exprimer la densité volumique de charge 
et le vecteur densité de courant en 
fonction de la vitesse moyenne des 
porteurs de charge, de leur charge et de 
leur densité volumique. 
Relier l’intensité du courant et le flux du 
vecteur densité de courant 

 

5.2.1 Conservation de la charge   
Équation locale de conservation de la charge.  
 
 
 
 
 
 
 
 
 

Etablir l’équation traduisant la 
conservation de la charge dans le seul cas 
d’un problème unidimensionnel en 
géométrie cartésienne. 
Citer et utiliser une généralisation admise 
en géométrie quelconque utilisant 
l’operateur divergence, son expression 
étant fournie. 
Exploiter le caractère conservatif du 
vecteur densité de courant en régime 
stationnaire ; relier cette propriété a la loi 
des nœuds de l’électrocinétique. 

Exercice 3 page 34 
 
 
 
 
 
 

5.2.3 Conduction électrique dans un 
conducteur ohmique 

  

Loi d’Ohm locale. Conductivité électrique. 
 
 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Effet Hall. 
 
---------------------------------------------------------------- 
Effet thermique du courant électrique : loi de 
Joule locale. 

Etablir l’expression de la conductivité 
électrique a l’aide d’un modèle 
microscopique, l’action de l’agitation 
thermique et des défauts du réseau étant 
décrite par une force de frottement fluide 
linéaire. 
Discuter de l’influence de la fréquence sur 
la conductivité électrique. 
Etablir l’expression de la résistance d’une 
portion de conducteur filiforme. 
-------------------------------------------------------------- 
Interpréter qualitativement l’effet Hall dans 
une géométrie parallélépipédique. 
-------------------------------------------------------------- 
Exprimer la puissance volumique dissipée par 
effet Joule dans un conducteur ohmique. 

 
 
 
 
 
 
 
 
Exercice 10 page 39 
 
 
Cours E4 
 
 
Exercice 11 page 39 
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Notions et contenus Capacités exigibles  
5.2 Électrostatique   
5.2.1 Champ électrostatique   
Loi de Coulomb. 
Champ et potentiel électrostatiques crées 
par une charge ponctuelle. Principe de 
superposition. 

Exprimer le champ électrostatique et le 
potentiel crées par une distribution 
discrète de charges. 
Citer quelques ordres de grandeur de 
champs électrostatiques. 

Exercice 4 page 35 
 
 

Propriétés du champ électrostatique 
 
Symétries. 
 
 
 
---------------------------------------------------------------- 
Circulation du champ électrostatique. 
Potentiel électrostatique. Equations locales. 
 
 
 
 
 
----------------------------------------------------------------- 
Théorème de Gauss et équation locale de 
Maxwell-Gauss. 
----------------------------------------------------------------- 
Lignes de champ électrostatique. 
Equipotentielles. 
 

 
 
Exploiter les propriétés de symétrie des 
sources (translation, rotation, symétrie 
plane, conjugaison de charges) pour 
prévoir des propriétés du champ crée. 
--------------------------------------------------------------- 
Relier l’existence d’un potentiel 
électrostatique a la nullité du rotationnel 
du vecteur champ électrostatique. 
Justifier l’orthogonalité des lignes de 
champ avec les surfaces équipotentielles 
et leur orientation dans le sens des 
potentiels décroissants. 
---------------------------------------------------------------- 
Choisir une surface adaptée et utiliser le 
théorème de Gauss. 
----------------------------------------------------------------- 
Justifier qu’une carte de lignes de champ 
puisse ou non être celle d’un champ 
électrostatique. 
Repérer, sur une carte de champ 
électrostatique, d’éventuelles sources du 
champ et leur signe. 
Associer l’évolution de la norme du champ 
électrostatique a l’évasement des tubes de 
champ loin des sources. 
Relier équipotentielles et lignes de champ 
électrostatique. 
Evaluer la norme du champ électrostatique 
à partir d’un réseau de lignes 
équipotentielles. 

 
 
Cours E2 
 
 
 
 
 
 
 
 
 
 
 
 
Exercice 5 page 35 
Exercice 6 page 36 
 
Exercice 4 page 35 
 

5.2.2 Exemples de champs électrostatiques   
Dipôle électrostatique. Moment dipolaire 
----------------------------------------------------------------- 
Potentiel et champ créés par un dipôle.  
 
 
 
 
 
----------------------------------------------------------------- 
Actions subies par un dipôle placé dans un 
champ électrostatique d’origine extérieure : 
résultante et moment. 
 
----------------------------------------------------------------- 
Énergie potentielle d’un dipôle rigide dans un 
champ électrostatique d’origine extérieure. 
 
 
 
 
------------------------------------------------------------------ 
Interactions ion-molécule et molécule-molécule.  
 
------------------------------------------------------------------ 
Dipôle induit. Polarisabilité. 
 

Citer les conditions de l’approximation dipolaire. 
----------------------------------------------------------------- 
Établir l’expression du potentiel V. Comparer la 
décroissance avec la distance du champ et du 
potentiel dans le cas d’une charge ponctuelle et 
dans le cas d’un dipôle.  
Tracer l’allure des lignes de champ 
électrostatique engendrées par un dipôle. 
----------------------------------------------------------------- 
Utiliser les expressions fournies de la 
résultante et du moment des actions 
subies par un dipôle place dans un champ 
électrostatique d’origine extérieure. 
----------------------------------------------------------------- 
Utiliser l’expression fournie de l’énergie 
potentielle d’un dipôle rigide dans un 
champ électrostatique d’origine extérieure. 
Prévoir qualitativement l’évolution d’un 
dipôle rigide dans un champ 
électrostatique d’origine extérieure. 
----------------------------------------------------------------- 
Expliquer qualitativement la solvatation des 
ions dans un solvant polaire. 
----------------------------------------------------------------- 
Associer la polarisabilité et le volume de l’atome 
en ordre de grandeur. 

 
 
Cours E3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercice 8 page 37 
 
 

Plan infini uniformément chargé en surface. 
 
------------------------------------------------------------------ 
Condensateur plan. Capacite. 
Densité volumique d’énergie électrostatique. 

Établir l’expression du champ créé par un 
plan infini uniformément charge en surface. 
----------------------------------------------------------------- 
Etablir l’expression du champ crée par un 
condensateur plan. 
Déterminer l’expression de la capacite 
d’un condensateur plan. 
Citer l’ordre de grandeur du champ 
disruptif dans l’air. 
Déterminer l’expression de la densité 

 
 
 
Exercice 7 page 37 
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volumique d’énergie électrostatique dans 
le cas du condensateur plan à partir de 
celle de l’énergie du condensateur.  

Energie de constitution d’un noyau atomique 
modélisé par une boule uniformément 
chargée. 

Exprimer l’énergie de constitution d’un 
noyau en construisant le noyau par 
adjonction progressive de charges 
apportées de l’infini. 

Cours E3 

5.2.3 Analogies avec le champ gravitationnel   
Analogies entre champ électrostatique et champ 
gravitationnel. 
 

Utiliser les analogies entre les forces 
électrostatique et gravitationnelle pour 
déterminer l’expression de champs 
gravitationnels. 

Exercice 9 page 38 

 
Notions et contenus Capacités exigibles  

5.3  Magnétostatique   
5.3.1 Champ magnétostatique   
Équations locales de la magnétostatique et 
formes intégrales : flux conservatif et théorème 
d’Ampère.  
---------------------------------------------------------------- 
Linéarité des équations. 

Choisir un contour, une surface et les orienter 
pour appliquer le théorème d’Ampère. 
 
-------------------------------------------------------------- 
Utiliser une méthode de superposition. 

Exercice 18 page 43 
 
 

Propriétés de symétrie.  
 
 
---------------------------------------------------------------- 
Propriétés topographiques.  

Exploiter les propriétés de symétrie des 
sources (rotation, symétrie plane) pour 
prévoir des propriétés du champ crée. 
--------------------------------------------------------------- 
Justifier qu’une carte de lignes de champ 
puisse ou non être celle d’un champ 
magnétostatique. 
Repérer, sur une carte de champ 
magnétostatique, d’éventuelles sources du 
champ et leur sens. 
Associer l’évolution de la norme d’un champ 
magnétique a l’évasement des tubes de 
champ. 

Exercice 16 page 42 
 
 

5.3.2Exemples de champs magnétostatiques   
Modèle du câble rectiligne infini. 
 
---------------------------------------------------------------- 
Solénoïde long sans effets de bords.  
 
 
---------------------------------------------------------------- 
Inductance propre.  
Densité volumique d’énergie magnétique. 
 

Déterminer le champ créé par un câble 
rectiligne infini. 
--------------------------------------------------------------- 
Etablir et citer l’expression du champ a 
l’intérieur d’un solénoïde long, la nullité du 
champ extérieur étant admise. 
--------------------------------------------------------------- 
Etablir les expressions de l’inductance 
propre et de l’énergie d’une bobine 
modélisée par un solénoïde long. 
Associer l’énergie d’une bobine a une 
densité volumique d’énergie magnétique. 

Exercice 15 page 41 
 
 
Exercice 13 page 41 
 
 
 
Cours E6 

5.3.3 Dipôles magnétostatiques   
Moment magnétique d’une boucle de courant 
plane. 
 
---------------------------------------------------------------- 
Rapport gyromagnétique de l’électron. 
Magnéton de Bohr.  
 
 
 
 
--------------------------------------------------------------- 
Actions subies par un dipôle magnétique placé 
dans un champ magnétostatique d’origine 
extérieure : résultante et moment.  
 
 
 
---------------------------------------------------------------- 
Énergie potentielle d’un dipôle magnétique 
rigide placé dans un champ magnétostatique 
d’origine extérieure. 
 
 
 
 

Utiliser un modèle planétaire pour relier le 
moment magnétique d’un atome d’hydrogène à 
son moment cinétique.  
--------------------------------------------------------------- 
Construire en ordre de grandeur le 
magnéton de Bohr par analyse 
dimensionnelle. 
Evaluer l’ordre de grandeur maximal du 
moment magnétique volumique d’un aimant 
permanent. 
--------------------------------------------------------------- 
Utiliser les expressions fournies de la 
résultante et du moment des actions subies 
par un dipôle magnétique place dans un 
champ magnétostatique d’origine extérieure. 
Décrire l’expérience de Stern et Gerlach et 
expliquer ses enjeux. 
--------------------------------------------------------------- 

Utiliser l’expression fournie de l’énergie 
potentielle d’un dipôle rigide dans un 
champ magnétostatique d’origine 
extérieure. 
Prévoir qualitativement l’évolution d’un 
dipôle rigide dans un champ 
magnétostatique d’origine extérieure. 

Cours E7 
 
 
 
 
 
 
 
 
 
 
Exercice 19 page 43 
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Notions et contenus Capacités exigibles  
5.4 Équations de Maxwell   
5.4.1 Postulats de l’électromagnétisme   
Force de Lorentz. Equations locales de 
Maxwell. Formes intégrales. 
 
. 
 
 

Utiliser les équations de Maxwell sous 
forme locale ou intégrale. 
Relier l’équation de Maxwell-Faraday et la 
loi de Faraday. 
Etablir l’équation locale de la conservation 
de la charge à partir des équations de 
Maxwell. 
Utiliser une méthode de superposition. 
 
Mettre en œuvre un dispositif 
expérimental utilisant des capteurs 
inductifs.. 

 
 
Exercice 22 page 44 

5.4.2 Aspects énergétiques   
Vecteur de Poynting. Densité volumique 
d’énergie électromagnétique. Équation locale de 
Poynting.  

Utiliser les grandeurs énergétiques pour faire 
des bilans d’énergie électromagnétique. 
Associer le vecteur de Poynting et l’intensité 
lumineuse utilisée en optique. 

Exercice 23 page 45 

5.4.3 Approximation des régimes quasi-
stationnaires « magnétique » 

  

Equations de propagation des champs 
électrique et magnétique dans le vide. 
 
 
 
----------------------------------------------------------------- 
ARQS  magnétique  

Etablir les équations de propagation des 
champs électrique et magnétique dans le 
vide. 
Expliquer le caractère non instantané des 
interactions électromagnétiques. 
--------------------------------------------------------------- 

Discuter l’approximation des régimes quasi-
stationnaires. 
Simplifier et utiliser les équations de 
Maxwell et l’équation de conservation de la 
charge dans l’approximation du régime 
quasi-stationnaire. 
Etendre le domaine de validité des 
expressions des champs magnétiques 
obtenues en régime stationnaire. 

 
 
 
 
 
 
 

 
 
 
 

5. Physique des ondes 
 

Notions et contenus Capacités exigibles  
6.1 Phénomènes de propagation non 
dispersifs : équation de d’Alembert 

  

6.1.1 Ondes mécaniques unidimensionnelles 
dans les solides déformables 

  

Ondes transversales sur une corde vibrante. Etablir l’équation d’onde décrivant les ondes 
transversales sur une corde vibrante 
infiniment souple dans l’approximation des 
petits mouvements transverses. 
 

Exercice 1 page 46 

Domaine d’élasticité d’un solide : module 
d’Young, loi de Hooke. 
 
 
---------------------------------------------------------------- 
Ondes mécaniques longitudinales dans une 
tige solide dans l’approximation des milieux 
continus. 

Exploiter le modelé de la chaine d’atomes 
élastiquement lies pour relier le module 
d’Young d’un solide élastique a ses 
caractéristiques microscopiques. 
-------------------------------------------------------------- 
Etablir l’équation d’onde décrivant les ondes 
mécaniques longitudinales dans une tige 
solide. 

 
 
 
 
 
Exercice 2 page 46 

Équation de d’Alembert ; célérité. 
 
 
 
---------------------------------------------------------------- 
Ondes progressives, ondes progressives 
harmoniques ; ondes stationnaires. 
 
 
----------------------------------------------------------------- 
Modes propres d’une corde vibrante fixée a 
ses deux extremités.  
Résonances d’une corde de Melde. 
 

Identifier l’équation de d’Alembert. 
Relier qualitativement la célérité d’ondes 
mécaniques, la raideur et l’inertie du milieu 
support. 
-------------------------------------------------------------- 
Différencier une onde stationnaire d’une 
onde progressive. 
Utiliser qualitativement l’analyse de Fourier 
pour décrire une onde non harmonique. 
-------------------------------------------------------------- 
Décrire les modes propres d’une corde 
vibrante fixée à ses deux extrémités. 
Interpréter quantitativement les résonances 
observées avec la corde de Melde en 
négligeant l’amortissement. 

 
 
 
 
 
 
 
 
 
 
Exercice 6 page 47 
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6.1.2 Ondes acoustiques dans les fluides   

Approximation acoustique. Equation de 
d’Alembert pour la surpression acoustique. 
 
 
 
 
 
 
 
 
------------------------------------------------------------------- 
Célérité des ondes acoustiques. 
 

Classer les ondes acoustiques par domaines 
fréquentiels. 
Valider l’approximation acoustique. 
Etablir, par une approche eulérienne, 
l’équation de propagation de la surpression 
acoustique dans une situation 
unidimensionnelle en coordonnées 
cartésiennes. 
Utiliser l’opérateur laplacien pour généraliser 
l’équation d’onde. 
-------------------------------------------------------------- 
Exprimer la célérité des ondes acoustiques 
en fonction de la température pour un gaz 
parfait. 

Cours Onde2 

Ondes planes progressives harmoniques : 
caractère longitudinal, impédance 
acoustique. 

Exploiter la notion d’impédance acoustique 
pour faire le lien entre les champs de 
surpression et de vitesse d’une onde plane 
progressive harmonique. 
Utiliser le principe de superposition des 
ondes planes progressives harmoniques. 

Exercice 7 page 48 

Densité volumique d’énergie acoustique, 
vecteur densité de courant énergétique. 
Intensité sonore. Niveau d’intensité sonore. 
 
 

Utiliser les expressions admises du vecteur 
densité de courant énergétique et de la 
densité volumique d’énergie associes à la 
propagation de l’onde. 
Citer quelques ordres de grandeur de 
niveaux d’intensité sonore. 

Exercice 9 page 48 

Ondes acoustiques sphériques harmoniques. Utiliser une expression fournie de la 
surpression pour interpréter par un argument 
énergétique la décroissance en 1/r de 
l’amplitude. 

Exercice 11 page 49 

6.1.3 Ondes électromagnétiques dans le vide   
Equations de propagation d’un champ 
électromagnétique dans une région sans 
charge ni courant. 
------------------------------------------------------------------ 
Structure d’une onde plane progressive 
harmonique. 
 
 
 
 
 
------------------------------------------------------------------ 
Aspects énergétiques. 
 
 
 
 
 
 
 
 
------------------------------------------------------------------- 
Polarisation des ondes électromagnétiques 
planes progressives harmoniques : 
polarisation elliptique, circulaire et rectiligne. 
Loi de Malus. 
 
 
 
 
 

Etablir et citer les équations de propagation 
d’un champ électromagnétique dans le vide. 
 
-------------------------------------------------------------- 
Etablir et exploiter la structure d’une onde 
électromagnétique plane progressive 
harmonique. 
Utiliser la superposition d’ondes planes 
progressives harmoniques pour justifier les 
propriétés d’ondes électromagnétiques 
planes progressives non harmoniques..  
 ------------------------------------------------------------- 
Relier la direction du vecteur de Poynting et 
la direction de propagation de l’onde 
électromagnétique. 
Interpréter le flux du vecteur de Poynting en 
termes particulaires. 
Citer quelques ordres de grandeur de flux 
énergétiques surfaciques moyens et les 
relier aux ordres de grandeur des champs 
électriques associes. 
-------------------------------------------------------------- 
Relier l’expression du champ électrique à 
l’état de polarisation d’une onde. 
 
 
Utiliser la loi de Malus. 
Reconnaître une lumière polarisée 
Rectilignement. 
Distinguer une lumière non polarisée 
D’une lumière totalement polarisée. 
Utiliser une lame quart d’onde ou demi-
onde pour modifier ou analyser un état 
de polarisation, avec de la lumière 
totalement polarisée. 

 
 
 
 
Exercice 12 page 50 
 
 
 
 
 
 
 
Exercice 14 page 50 
 
 
 
 
 
 
 
 
 
Exercice 19 page 52 
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6.2 Phénomènes de propagation linéaires 
unidimensionnels 

  

6.2.1 Dispersion et absorption   
Propagation unidimensionnelle d’une onde 
harmonique dans un milieu linéaire. 
 
 
 
 
 
 
 
----------------------------------------------------------------- 
Dispersion, absorption. 
 
 

Identifier le caractère linéaire d'une équation 
aux dérivées partielles. 
Etablir la relation de dispersion 
caractéristique d’un phénomène de 
propagation en utilisant des ondes de la 
forme expj(kx-ωt). 
Distinguer différents types de 
comportements selon la valeur de la 
pulsation. 
-------------------------------------------------------------- 

Associer les parties réelle et imaginaire de k 
aux phénomènes de dispersion et 
d’absorption. 

 
 
Exercice 20 page 53 

 
 
 

 

Propagation d’un paquet d’ondes dans un 
milieu non absorbant et faiblement dispersif : 
vitesse de phase et vitesse de groupe. 

Enoncer et exploiter la relation entre les 
Ordres de grandeur de la durée temporelle 
d’un paquet d’onde et la largeur 
fréquentielle de son spectre. 
Déterminer la vitesse de groupe d’un 
paquet d’ondes à partir de la relation de 
dispersion. 
Associer la vitesse de groupe à la 
propagation de l’enveloppe du paquet 
d’ondes. 
 
Étudier la propagation d’une onde 
électrique dans un câble coaxial. 
 
Capacite numérique : à l’aide d’un langage 
de programmation, simuler la propagation 
d’un paquet d’ondes dans un milieu 
dispersif et visualiser le phénomène 

 
 
 
 
Exercice 22 page 54 
 
 
 
 
 
 
TP 13 

6.2.2 Ondes électromagnétiques dans les 
milieux matériels 

  

Propagation d’une onde électromagnétique 
plane harmonique unidirectionnelle dans un 
conducteur ohmique de conductivité réelle. 
Effet de peau dans un conducteur ohmique. 

Identifier une analogie avec un phénomène 
de diffusion. 
Etablir la relation de dispersion des ondes 
électromagnétiques dans un conducteur 
ohmique a basses fréquences. 
Associer l’atténuation de l’onde dans le 
milieu conducteur a une dissipation 
d’énergie. 
Estimer l’ordre de grandeur de l’épaisseur 
de peau du cuivre a différentes fréquences. 

Cours Onde5 

Propagation d’une onde électromagnétique 
plane harmonique transverse et 
unidirectionnelle dans un plasma dilue. 
Conductivité électrique complexe. 
 
 
 
----------------------------------------------------------------- 
Relation de dispersion. Pulsation plasma. 
Domaine de transparence. 
Domaine réactif, onde évanescente. 

Justifier la neutralité électrique locale du 
plasma en présence d’une onde transverse. 
Etablir l’expression de la conductivité 
électrique complexe du plasma. 
Interpréter énergétiquement le caractère 
imaginaire pur de la conductivité électrique 
complexe du plasma. 
------------------------------------------------------------- 
Etablir la relation de dispersion des ondes 
planes progressives harmoniques 
transverses. 
Exprimer la vitesse de phase et la vitesse 
de groupe d’un paquet d’ondes dans le 
domaine de transparence du plasma. 
Interpréter la pulsation plasma comme une 
pulsation de coupure. 
Citer les caractéristiques d’une onde 
stationnaire évanescente. 
Justifier que, dans le domaine réactif, une 
onde électromagnétique harmonique ne 
transporte aucune puissance en moyenne. 

Cours Onde5 
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6.3 Interfaces entre deux milieux   
Réflexion, transmission d’une onde 
acoustique plane progressive sous incidence 
normale sur une interface plane infinie entre 
deux fluides : coefficients de réflexion et de 
transmission en amplitude des vitesses, des 
surpressions et des puissances acoustiques 
surfaciques moyennes. 

Expliciter des conditions aux limites à une 
interface. 
Établir les expressions des coefficients de 
transmission et de réflexion. 
Associer l’adaptation des impédances au 
transfert maximum de puissance. 
  

Exercice 28 page 57 
 
 
 
 

 

Réflexion et transmission d’une onde 
électromagnétique plane progressive 
harmonique polarisée rectilignement a 
l’interface entre deux milieux d’indices 
complexes n1 et n2 dans le cas d’une 
incidence normale : coefficients de réflexion 
et de transmission du champ électrique. 
 

Exploiter la continuité admise du champ 
électromagnétique dans cette configuration 
pour obtenir l’expression des coefficients de 
réflexion et de transmission en fonction des 
indices complexes. 
Utiliser les expressions des coefficients de 
réflexion et de transmission du champ 
électrique dans des situations variées. 
Etablir et interpréter les expressions des 
coefficients de réflexion et de transmission 
en puissance dans le cas d’une interface 

Exercice 30 page 58 
 
 
                                                                                      

 
6.4 Introduction à la physique du laser   
6.4.1 Milieu amplificateur de lumière   
Absorption, émission stimulée, émission 
spontanée. 
--------------------------------------------------------------- 
Coefficients d’Einstein. 
 
 
 
 
--------------------------------------------------------------- 
Amplification d’ondes lumineuses par 
émission stimulée. 
 
 

Distinguer les propriétés d’un photon émis 
par émission spontanée ou stimulée. 
------------------------------------------------------------- 
Associer l’émission spontanée a la durée de 
vie d’un niveau excite. 
Utiliser les coefficients d’Einstein dans le cas 
d’un système a plusieurs niveaux non 
dégénérés. 
------------------------------------------------------------- 
Justifier qualitativement la nécessité d’une 
inversion de population pour parvenir a 
amplifier une onde électromagnétique dans 
un laser. 

 
 
 
Exercice 33 page 60 

6.4.2 Propriétés optiques d’un faisceau 
spatialement limité 

  

Description simplifiée d’un faisceau de 
profil gaussien : waist, longueur de 
Rayleigh, ouverture angulaire. 
 
 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Transformation a l’aide d’une lentille d’un 
faisceau cylindrique en faisceau conique et 
réciproquement. 
Elargisseur de faisceau. 

Justifier qualitativement l’inadéquation du 
modèle de l’onde plane pour décrire un 
faisceau laser. 
Utiliser l’expression fournie du profil radial 
d’intensité. 
Construire l’allure d’un faisceau de profil 
gaussien à partir de l’enveloppe d’un 
faisceau cylindrique et d’un faisceau 
conique. 
Exploiter qualitativement le phénomène de 
diffraction pour relier le waist et l’ouverture 
angulaire du faisceau à grande distance. 
-------------------------------------------------------------- 
Déterminer la dimension et la position de la 
section minimale du faisceau émergeant 
d’une lentille éclairée par un faisceau 
cylindrique. 

Exercice 31 page 59 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercice 32 page 59 

 
6.5 Approche ondulatoire de la mécanique 
quantique  

  

6.5.1  Amplitude de probabilité   

Fonction d’onde ψ(x,t) associée a une 
particule dans un problème 
unidimensionnel. Densité linéique de 
probabilité de présence. 
----------------------------------------------------------------- 
Principe de superposition. Interférences. 

Normaliser une fonction d’onde. 
Relier qualitativement la fonction d’onde a la 
notion d’orbitale en chimie. 
 

-------------------------------------------------------------- 

Relier la superposition de fonctions d’ondes 
a la description d’une expérience 
d’interférences entre particules. 

Exercice 35 page 61 

6.5.2 Équation de Schrödinger pour une 
particule libre 

  

Équation de Schrödinger. 
----------------------------------------------------------------- 
États stationnaires. 
 
 
 
 
 

Utiliser l’équation de Schrödinger fournie.  
-------------------------------------------------------------- 
Associer les états stationnaires aux états 
d’énergie déterminée. 
Etablir et utiliser la forme 
ψ(x,t) = ϕ(x) exp(-iEt/ħ) pour la fonction 
d’onde d’un état stationnaire et l’associer à la 
relation de Planck-Einstein. 

Cours Onde8 
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Paquet d’ondes associe a une particule 
libre. Relation Δkx Δx ≥ 1/2. 
 
 
 
 
 
 
 
---------------------------------------------------------------- 
Courant de probabilité associé à une particule 
libre 
 
 

Distinguer l’onde associée a un état 
stationnaire en mécanique quantique d’une 
onde stationnaire au sens usuel de la 
physique des ondes. 
Utiliser l’équation de Schrodinger pour 
déterminer la partie spatiale ϕ(x) des 
fonctions d’onde stationnaires décrivant une 
particule libre. 
Identifier la vitesse d’une particule libre et la 
vitesse du paquet d’ondes la décrivant. 
Exploiter l’inégalité de Heisenberg pour relier 
l’étendue spatiale et l’étendue spectrale du 
paquet d’ondes décrivant une particule libre. 
-------------------------------------------------------------- 
Utiliser l’expression admise du courant de 
probabilité associe à une particule libre et 
l’interpréter comme un produit 
densité*vitesse. 

 

 

 

 

 

 

 

 

 

 

Exercice 36 page 61 

 

 

 
 
 
 

6.5.3 Équation de Schrödinger dans un  
potentiel V(x) uniforme par morceaux 

  

Quantification de l’énergie dans un puits de 
potentiel rectangulaire de profondeur infinie.  
 
 
----------------------------------------------------------------- 
Énergie de confinement quantique. 

Établir les expressions des énergies des états 
stationnaires. 
Retrouver qualitativement l’énergie minimale à 
partir de l’inégalité de Heisenberg. 
-------------------------------------------------------------- 
Associer le confinement d’une particule 
quantique à une augmentation de l’énergie 
cinétique. 

Exercice 37 page 62 

Evolution temporelle d’une particule confinée 
dans une superposition d’états. 

Mettre en évidence les oscillations d’une 
particule dont la fonction d’onde s’écrit 
comme la superposition de deux états 
stationnaires et relier la fréquence 
d’oscillation a la différence des énergies. 

Exercice 38 page 62 

Quantification de l’énergie des états liés dans un 
puits de profondeur finie. 
Élargissement effectif du puits par les ondes 
évanescentes. 
 
 
 
 

Décrire la forme des fonctions d’onde 
dans les différents domaines. 
Utiliser les conditions aux limites 
admises : continuité de ϕ et dϕ/dx. 
Associer la quantification de l’énergie au 
caractère lie de la particule. 
Mener une discussion graphique. 
Interpréter qualitativement, à partir de 
l’inégalité de Heisenberg spatiale, 
l’abaissement des niveaux d’énergie par 
rapport au puits de profondeur infinie. 

 
 

6.5.4  Effet tunnel   
Effet tunnel. 
Coefficient de transmission associé à une 
particule libre incidente sur une barrière de 
potentiel. 
 

Citer quelques applications de l’effet tunnel. 
Définir le coefficient de transmission comme 
un rapport de courants de probabilités. 
Utiliser une expression fournie du coefficient 
de transmission à travers une barrière de 
potentiel. 

Exercice 40 page 63 
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SANS OUBLIER : 

__________________________________________________________________________________________ 

• Connaître parfaitement et savoir utiliser les coordonnées sphériques et cylindriques. 

__________________________________________________________________________________________ 

• Connaître parfaitement et savoir utiliser les opérateurs de l’analyse vectorielle en coordonnées cartésiennes :  
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__________________________________________________________________________________________ 

• Connaître parfaitement les équations différentielles classiques dont on peut donner directement la solution : 

 

- 0fk
dx

fd 2

2

2

=+       de solution :    f(x) = αcos(kx) + βsin(kx)      ou      f(x) = Acos(kx+ϕ) 

- 0fk
dx

fd 2

2

2

=−       de solution :    f(x) = αch(kx) + βsh(kx)         ou      f(x) = Aexp(kx) + Bexp(-kx)  

- 0
f

dx

df =
δ

+             de solution :    f(x) = Aexp(-x/δ) 

- 0
f

dx

df =
δ

−             de solution :    f(x) = Aexp(x/δ) 

- 0fk
dx

df
2

dx

fd 2

2

2

=+λ+  de solution  )]xkexp(B)xkexp(A)[xexp()x(f 2222 −λ+−λ−λ−=   si  λ > k 

                                                                      )]xksin(B)xkcos(A)[xexp()x(f 2222 λ−+λ−λ−=       si  k > λ 

 

                                                                       ]BxA)[xexp()x(f +λ−=     si λ= k 

 

  Attention : La variable n’est pas toujours x, mais souvent t. Dans ce cas on utilise plutôt la notation ω à la  

                     place de k et la notation τ à la place de δ. 

  Attention : S’il y a un second membre constant, on rajoute une solution particulière constante. 

                    S’il y a un second membre sinusoïdal, on rajoute une solution particulière sinusoïdale que l’on  

                    recherche, en général, en notation complexe 

__________________________________________________________________________________________ 

• Connaitre le principe de l’analyse de Fourier : décomposition d’un signal en une somme, discrète ou continue,   

                                                                             de fonctions sinusoïdales  

 

Un signal s(t) prenant des valeurs notables sur un intervalle de largeur ∆t a un spectre de Fourier qui prend 

des valeurs notables sur un intervalle de largeur en fréquence ∆f.  

 

      On a la relation de Fourier :     ∆f.∆t ≈ 1 
_____________________________________________________________________________________________________ 


