Introduction

Le Pere Noél a rencontré la classe de PC et a décidé de moderniser sa logistique et il utilise désormais une
base de données pour gérer et planifier la distribution de tous les cadeaux. L'objectif de ce devoir est d'utiliser
le langage SQL pour interroger cette base de données et l'aider a répondre a divers besoins d’information.

pour le 6 Janvier 2026

Structure de la Base de Données

SQL et Logistique de No€l

La base de données est composée de trois tables principales reliées entre elles.

Table Enfants

Elle contient les informations sur les destinataires des cadeaux.

Attribut | Description Type de Donnée | Contrainte
IdEnfant | Identifiant unique INTEGER Clé Primaire
Prénom Prénom de 'enfant | VARCHAR(50)

Adresse | Adresse de livraison | VARCHAR(255)

Age Age de Tenfant INTEGER

Table Cadeaux

Elle répertorie tous les cadeaux disponibles dans I’entrepot du Pere Noél.

Attribut Description Type de Donnée | Contrainte
IdCadeau | Identifiant unique INTEGER Clé Primaire
Nom Nom du cadeau VARCHAR(100)

Prix Prix DECIMAL(5, 2)

Stock Quantité en stock INTEGER

AgeMini Age minimum recommandé INTEGER

Catégorie | Type de cadeau (ex : Jouet, Livre, Nourriture, etc.) | VARCHAR(50)

Table Distribution

Cette table d’association gére la relation entre les enfants et les cadeaux qui leur sont attribués, ainsi que

I'’heure de livraison prévue.

Attribut | Description Type de Donnée Contrainte
IdEnfant | Identifiant de I'enfant INTEGER Clé Etrangeére vers Enfants
IdCadeau | Identifiant du cadeau INTEGER Clé Etrangére vers Cadeaux
Heure Heure de livraison prévue | TIME

La clé primaire de cette table est la combinaison des attributs (IdEnfant, IdCadeau).

Les Requétes SQL a Rédiger

Pour chacune des questions ci-dessous, veuillez rédiger la requéte SQL complete correspondante.

1. Afficher le Prénom et 'Adresse de tous les enfants agés de moins de 8 ans.

A N A A

10.

11.

12.

13.

14.
15.
16.

Lister tous les Noms des cadeaux de la Catégorie 'Jouet’, triés par Prix décroissant.
Trouver, pour chaque Catégorie, le prix du cadeau le plus cher.

Trouver le nombre total de cadeaux en stock.

Compter le nombre total de cadeaux différents que doit livrer le Pere Noél.

Donner le nom du livre qui a le plus d’exemplaires en stock.

Afficher le Prénom de I'enfant qui est censé recevoir son cadeau exactement a 00 :30 :00.
Calculer le prix total de tous les cadeaux qui sont actuellement planifiés pour la distribution.

Identifier les catégories de cadeaux pour lesquelles le Pere Noél a prévu au moins deux cadeaux
différents. (Afficher la catégorie et le nombre de cadeaux dans cette catégorie.)

Afficher le Prénom de I'enfant et le Nom du cadeau qu’il va recevoir.

Le Pere Noél souhaite vérifier si le stock de chaque cadeau est suffisant pour assurer toutes les dis-
tributions prévues. Lister les cadeaux dont le stock ne permet pas d’assurer toutes les distributions
prévues.

Afficher le Prénom des enfants qui recoivent un cadeau dont le Prix est supérieur au prix moyen de
I'ensemble des cadeaux.

Afficher le Nom des cadeaux dont le Stock est inférieur au stock moyen des cadeaux de la méme
Catégorie.

Afficher les Prénoms des enfants qui recoivent au moins un cadeau de la Catégorie 'Livre’.
Lister les Noms des cadeaux qui ne sont attribués a aucun enfant dans la table Distribution.

Afficher les Prénoms des enfants pour lesquels il existe au moins un cadeau dont ’AgeMini recommandé
est strictement supérieur a leur Age.

A A

SELECT Prénom, Adresse FROM Enfants WHERE Age <= 8;

SELECT Nom, Prix FROM Cadeaux WHERE Catégorie = "Jouet" ORDER BY Prix DESC;
SELECT Catégorie, MAX(Prix) FROM Cadeaux GROUP BY Catégorie;

SELECT SUM(Stock) FROM Cadeaux;;

SELECT COUNT(DISTINCT IdCadeau) FROM Distribution;

SELECT Nom FROM Cadeaux WHERE Catégorie = "Livre" AND Stock = (SELECT MAX(Stock) FROM
Cadeaux WHERE Catégorie = "Livre") ;

SELECT Prénom, Heure FROM Enfants JOIN Distribution ON Distribution.IdEnfant = Enfants.IdEnfant
WHERE Distribution.Heure = "00 :30 :00";

SELECT SUM(Prix) FROM Distribution JOIN Cadeaux ON Cadeaux.IdCadeau = Distribution.IdCadeau ;

9. SELECT Catégorie, COUNT (DISTINCT IdCadeau) AS NombreCadeaux FROM Cadeaux GROUP BY Ca-

10.

11.

12.

13.

tégorie HAVING NombreCadeaux>= 2;

Explications de la requéte :

* GROUP BY Catégorie : On regroupe tous les cadeaux qui appartiennent a la méme catégorie (ex :
tous les "Jouets’ ensemble).

* COUNT(DISTINCT IdCadeau) : On compte le nombre d’identifiants uniques de cadeaux dans ce
groupe. Cela permet d’ignorer les doublons si un méme cadeau était listé plusieurs fois par erreur.

e HAVING ... >= 2 : Contrairement a WHERE (qui filtre les lignes individuelles), HAVING permet de
filtrer les groupes apres le calcul de 'agrégation. On ne garde que les catégories qui ont au moins 2
cadeaux.

SELECT Prénom, Nom FROM Distribution JOIN Enfants ON Distribution.IdEnfant = Enfants.IdEnfant
JOIN Cadeau ON Distribution.IdCadeau = Cadeaux.IdCadeau;

Pour répondre a cette question, il faut comparer deux valeurs agrégées : le stock actuel disponible dans
la table Cadeaux et le nombre de fois que chaque cadeau apparait dans la table Distribution.

C’est une requéte qui utilise une jointure, un groupement (GROUP BY) et une condition sur le résultat
du calcul (HAVING).

SELECT Nom, Stock, COUNT (Distribution.IdCadeau) AS NbDistributionsPrévues FROM Cadeaux JOIN
Distribution ON Cadeaux.IdCadeau = Distribution.IdCadeau GROUP BY IdCadeau, Nom, Stock HA-
VING Stock < NbDistributionsPrévues;

Explications de la requéte :

e JOIN : On lie les cadeaux aux lignes de la table distribution. S’il y a 5 enfants qui attendent un
"Robot", il y aura 5 lignes pour ce cadeau apres la jointure.

* COUNT(Distribution.IdCadeau) : On compte combien de fois le cadeau est présent dans la planifi-
cation.

* GROUP BY : On regroupe par cadeau pour pouvoir faire le calcul par article.

* HAVING Stock < COUNTY(...) : C’est ici que réside la logique de rupture de stock. On ne garde que
les cadeaux ot le chiffre du stock est strictement inférieur au nombre de réservations dans la table
distribution.

SELECT Prénom FROM Enfants JOIN Distribution ON Enfants.IdEnfant = Distribution.IdEnfant JOIN
Cadeaux ON Distribution.IdCadeau = Cadeaux.ldCadeau WHERE Prix > (SELECT AVG(Prix) FROM
Cadeaux) ;

Cette requéte nécessite l'utilisation d’une sous-requéte corrélée. Contrairement a une sous-requéte

simple qui est calculée une seule fois, une sous-requéte corrélée s’exécute pour chaque ligne de la

requéte principale afin de comparer le stock d’'un cadeau a la moyenne spécifique de sa propre catégo-

rie. SELECT Nom FROM Cadeaux AS C1 WHERE Stock < (SELECT AVG(Stock) FROM Cadeaux AS C2

WHERE C1.Catégorie = C2.Catégorie) ; Explications de la requéte :

* Requéte externe (C1) : Elle parcourt la table Cadeaux un par un. Pour chaque cadeau (ex : un Robot
de la catégorie 'Jouet’), elle transmet la catégorie a la sous-requéte.

* Sous-requéte interne (C2) : Elle calcule la moyenne (AVG) du stock. La condition WHERE C1.Catégorie
= (C2.Catégorie force SQL a ne calculer la moyenne que pour les cadeaux appartenant a la méme
catégorie que celui examiné par la requéte externe.

* La sélection (WHERE) : Le nom du cadeau n’est affiché que si son stock personnel est strictement
inférieur au résultat renvoyé par la sous-requéte.

14. SELECT Prénom FROM Enfants WHERE IdEnfant IN (SELECT IdEnfant FROM Distribution JOIN Ca-
deaux ON Distribution.IdCadeau =Cadeaux.IdCadeau WHERE Catégorie = 'Livre’) ;

15. SELECT Nom FROM Cadeaux WHERE IdCadeau NOT IN (SELECT IdCadeau FROM Distribution) ;

Explications de la requéte :
* La sous-requéte entre parentheses récupere tous les IdCadeau présents dans la table Distribution.

* La requéte principale sélectionne les noms des cadeaux dont I'ldCadeau n’est pas dans cette liste.

16. SELECT Prénom FROM Enfants JOIN Distribution ON Enfants.IdEnfant = Distribution.IdEnfant JOIN
Cadeaux ON Distribution.IdCadeau = Cadeaux.IdCadeau WHERE AgeMini > Age;

