
SQL et Logistique de Noël

pour le 6 Janvier 2026

Introduction

Le Père Noël a rencontré la classe de PC et a décidé de moderniser sa logistique et il utilise désormais une
base de données pour gérer et planifier la distribution de tous les cadeaux. L’objectif de ce devoir est d’utiliser
le langage SQL pour interroger cette base de données et l’aider à répondre à divers besoins d’information.

Structure de la Base de Données

La base de données est composée de trois tables principales reliées entre elles.

Table Enfants

Elle contient les informations sur les destinataires des cadeaux.

Attribut Description Type de Donnée Contrainte
IdEnfant Identifiant unique INTEGER Clé Primaire
Prénom Prénom de l’enfant VARCHAR(50)
Adresse Adresse de livraison VARCHAR(255)

Âge Âge de l’enfant INTEGER

Table Cadeaux

Elle répertorie tous les cadeaux disponibles dans l’entrepôt du Père Noël.

Attribut Description Type de Donnée Contrainte
IdCadeau Identifiant unique INTEGER Clé Primaire
Nom Nom du cadeau VARCHAR(100)
Prix Prix DECIMAL(5, 2)
Stock Quantité en stock INTEGER

ÂgeMini Âge minimum recommandé INTEGER
Catégorie Type de cadeau (ex : Jouet, Livre, Nourriture, etc.) VARCHAR(50)

Table Distribution

Cette table d’association gère la relation entre les enfants et les cadeaux qui leur sont attribués, ainsi que
l’heure de livraison prévue.

Attribut Description Type de Donnée Contrainte
IdEnfant Identifiant de l’enfant INTEGER Clé Étrangère vers Enfants
IdCadeau Identifiant du cadeau INTEGER Clé Étrangère vers Cadeaux
Heure Heure de livraison prévue TIME

La clé primaire de cette table est la combinaison des attributs (IdEnfant, IdCadeau).

1

Les Requêtes SQL à Rédiger

Pour chacune des questions ci-dessous, veuillez rédiger la requête SQL complète correspondante.

1. Afficher le Prénom et l’Adresse de tous les enfants âgés de moins de 8 ans.

2. Lister tous les Noms des cadeaux de la Catégorie ’Jouet’, triés par Prix décroissant.

3. Trouver, pour chaque Catégorie, le prix du cadeau le plus cher.

4. Trouver le nombre total de cadeaux en stock.

5. Compter le nombre total de cadeaux différents que doit livrer le Père Noël.

6. Donner le nom du livre qui a le plus d’exemplaires en stock.

7. Afficher le Prénom de l’enfant qui est censé recevoir son cadeau exactement à 00 :30 :00.

8. Calculer le prix total de tous les cadeaux qui sont actuellement planifiés pour la distribution.

9. Identifier les catégories de cadeaux pour lesquelles le Père Noël a prévu au moins deux cadeaux
différents. (Afficher la catégorie et le nombre de cadeaux dans cette catégorie.)

10. Afficher le Prénom de l’enfant et le Nom du cadeau qu’il va recevoir.

11. Le Père Noël souhaite vérifier si le stock de chaque cadeau est suffisant pour assurer toutes les dis-
tributions prévues. Lister les cadeaux dont le stock ne permet pas d’assurer toutes les distributions
prévues.

12. Afficher le Prénom des enfants qui reçoivent un cadeau dont le Prix est supérieur au prix moyen de
l’ensemble des cadeaux.

13. Afficher le Nom des cadeaux dont le Stock est inférieur au stock moyen des cadeaux de la même
Catégorie.

14. Afficher les Prénoms des enfants qui reçoivent au moins un cadeau de la Catégorie ’Livre’.

15. Lister les Noms des cadeaux qui ne sont attribués à aucun enfant dans la table Distribution.

16. Afficher les Prénoms des enfants pour lesquels il existe au moins un cadeau dont l’ÂgeMini recommandé
est strictement supérieur à leur Âge.

1. SELECT Prénom, Adresse FROM Enfants WHERE Age <= 8 ;

2. SELECT Nom, Prix FROM Cadeaux WHERE Catégorie = "Jouet" ORDER BY Prix DESC ;

3. SELECT Catégorie, MAX(Prix) FROM Cadeaux GROUP BY Catégorie ;

4. SELECT SUM(Stock) FROM Cadeaux ;

5. SELECT COUNT(DISTINCT IdCadeau) FROM Distribution ;

6. SELECT Nom FROM Cadeaux WHERE Catégorie = "Livre" AND Stock = (SELECT MAX(Stock) FROM
Cadeaux WHERE Catégorie = "Livre") ;

7. SELECT Prénom, Heure FROM Enfants JOIN Distribution ON Distribution.IdEnfant= Enfants.IdEnfant
WHERE Distribution.Heure = "00 :30 :00" ;

8. SELECT SUM(Prix) FROM Distribution JOIN Cadeaux ON Cadeaux.IdCadeau=Distribution.IdCadeau ;

9. SELECT Catégorie, COUNT(DISTINCT IdCadeau) AS NombreCadeaux FROM Cadeaux GROUP BY Ca-
tégorie HAVING NombreCadeaux>= 2 ;
Explications de la requête :
• GROUP BY Catégorie : On regroupe tous les cadeaux qui appartiennent à la même catégorie (ex :

tous les ’Jouets’ ensemble).
• COUNT(DISTINCT IdCadeau) : On compte le nombre d’identifiants uniques de cadeaux dans ce

groupe. Cela permet d’ignorer les doublons si un même cadeau était listé plusieurs fois par erreur.
• HAVING ... >= 2 : Contrairement à WHERE (qui filtre les lignes individuelles), HAVING permet de

filtrer les groupes après le calcul de l’agrégation. On ne garde que les catégories qui ont au moins 2
cadeaux.

10. SELECT Prénom, Nom FROM Distribution JOIN Enfants ON Distribution.IdEnfant = Enfants.IdEnfant
JOIN Cadeau ON Distribution.IdCadeau = Cadeaux.IdCadeau ;

11. Pour répondre à cette question, il faut comparer deux valeurs agrégées : le stock actuel disponible dans
la table Cadeaux et le nombre de fois que chaque cadeau apparaît dans la table Distribution.
C’est une requête qui utilise une jointure, un groupement (GROUP BY) et une condition sur le résultat
du calcul (HAVING).
SELECT Nom, Stock, COUNT(Distribution.IdCadeau) AS NbDistributionsPrévues FROM Cadeaux JOIN
Distribution ON Cadeaux.IdCadeau = Distribution.IdCadeau GROUP BY IdCadeau, Nom, Stock HA-
VING Stock < NbDistributionsPrévues ;
Explications de la requête :
• JOIN : On lie les cadeaux aux lignes de la table distribution. S’il y a 5 enfants qui attendent un

"Robot", il y aura 5 lignes pour ce cadeau après la jointure.
• COUNT(Distribution.IdCadeau) : On compte combien de fois le cadeau est présent dans la planifi-

cation.
• GROUP BY : On regroupe par cadeau pour pouvoir faire le calcul par article.
• HAVING Stock < COUNT(...) : C’est ici que réside la logique de rupture de stock. On ne garde que

les cadeaux où le chiffre du stock est strictement inférieur au nombre de réservations dans la table
distribution.

12. SELECT Prénom FROM Enfants JOIN Distribution ON Enfants.IdEnfant = Distribution.IdEnfant JOIN
Cadeaux ON Distribution.IdCadeau = Cadeaux.IdCadeau WHERE Prix > (SELECT AVG(Prix) FROM
Cadeaux) ;

13. Cette requête nécessite l’utilisation d’une sous-requête corrélée. Contrairement à une sous-requête
simple qui est calculée une seule fois, une sous-requête corrélée s’exécute pour chaque ligne de la
requête principale afin de comparer le stock d’un cadeau à la moyenne spécifique de sa propre catégo-
rie. SELECT Nom FROM Cadeaux AS C1 WHERE Stock < (SELECT AVG(Stock) FROM Cadeaux AS C2
WHERE C1.Catégorie = C2.Catégorie) ; Explications de la requête :
• Requête externe (C1) : Elle parcourt la table Cadeaux un par un. Pour chaque cadeau (ex : un Robot

de la catégorie ’Jouet’), elle transmet la catégorie à la sous-requête.
• Sous-requête interne (C2) : Elle calcule la moyenne (AVG) du stock. La condition WHERE C1.Catégorie
= C2.Catégorie force SQL à ne calculer la moyenne que pour les cadeaux appartenant à la même
catégorie que celui examiné par la requête externe.

• La sélection (WHERE) : Le nom du cadeau n’est affiché que si son stock personnel est strictement
inférieur au résultat renvoyé par la sous-requête.

14. SELECT Prénom FROM Enfants WHERE IdEnfant IN (SELECT IdEnfant FROM Distribution JOIN Ca-
deaux ON Distribution.IdCadeau =Cadeaux.IdCadeau WHERE Catégorie = ’Livre’) ;

15. SELECT Nom FROM Cadeaux WHERE IdCadeau NOT IN (SELECT IdCadeau FROM Distribution) ;
Explications de la requête :
• La sous-requête entre parenthèses récupère tous les IdCadeau présents dans la table Distribution.
• La requête principale sélectionne les noms des cadeaux dont l’IdCadeau n’est pas dans cette liste.

16. SELECT Prénom FROM Enfants JOIN Distribution ON Enfants.IdEnfant = Distribution.IdEnfant JOIN
Cadeaux ON Distribution.IdCadeau = Cadeaux.IdCadeau WHERE ÂgeMini > Âge ;

