
Chapitre 14

Intégration sur un intervalle quelconque

Dans ce chapitre, I désigne un intervalle d’intérieur non vide de R et on s’intéresse à
des fonctions définies sur I à valeurs dans K, corps des réels ou des complexes

I Intégrale généralisée sur [a ; +∞[

I. A Fonctions continues par morceaux

Une fonction f : I −→ K est dite continue par morceaux sur I lorsqu’elle est
continue par morceaux sur tout segment inclus dans I.

Définition 1.1

Notation L101 : On notera Cpm(I,K) l’ensemble des fonctions continues par mor-
ceaux sur I à valeurs dans K.

Exemples 1.2 : • La fonction partie entière est continue par morceaux sur R.
• La fonction inverse est continue par morceaux sur ]0 ; +∞[, mais elle n’a pas

de prolongement continu par morceaux sur [0 ; +∞[.

I. B Intégrales convergentes sur [a ; +∞[
Dans cette partie a ∈ R.

Soit f ∈ Cpm([a ; +∞[,K).

On dit que l’intégrale
∫ +∞

a

f converge lorsque la fonction x 7→
∫ x

a

f a une
limite finie en +∞.
On note alors

∫ +∞
a

f ou
∫ +∞

a
f(t) dt cette limite.

L’intégrale
∫ +∞

a
f est dite divergente lorsqu’elle n’est pas convergente.

Définition 1.3

Vocabulaire : • La nature d’une intégrale est son caractère convergent ou di-
vergent.

• Lorsque l’intégrale
∫ +∞

a
f converge, on dit que l’intégrale converge en +∞.

Soit f ∈ Cpm([a ; +∞[) et b ∈ [a ; +∞[.
Les intégrales

∫ +∞
a

f et
∫ +∞

b
f sont de même nature et si elles convergent, alors :∫ +∞

a

f =
∫ b

a

f +
∫ +∞

b

f.

Proposition 1.4

Soit f, g ∈ Cpm([a ; +∞[) et λ, µ ∈ R.
Si les intégrales

∫ +∞
a

f et
∫ +∞

a
g convergent, alors

∫ +∞
a

(λf + µg) converge et :∫ +∞

a

(λf + µg) = λ

∫ +∞

a

f + µ

∫ +∞

a

g.

Proposition 1.5 (linéarité de l’intégrale)

Soit f ∈ C([a ; +∞[,K) telle que l’intégrale
∫ +∞

a
f converge, alors l’application

g : [a ; +∞[ −→ K

x 7−→
∫ +∞

x

f

est dérivable sur [a ; +∞[ et ∀x ∈ [a ; +∞[, g′(x) = −f(x).

Proposition 1.6

I. C Intégrales des fonctions positives sur [a ; +∞[

Soit f une fonction continue par morceaux sur [a ; +∞[ et à valeurs positives, alors
l’intégrale

∫ +∞
a

f converge si et seulement si x 7→
∫ x

a
f est majorée.

Et en cas de convergence
∫ +∞

a
f = sup

x∈[a ;+∞[

∫ x

a
f .

Proposition 1.7

Remarque 1.8 : Si f ∈ Cpm([a ; +∞[,R) à valeurs positives et x 7→
∫ x

a
f n’est pas

majorée, alors ∫ x

a

f −−−−−→
x→+∞

+∞.

On notera alors
∫ +∞

a

f = +∞.

Attention : La convergence de l’intégrale
∫ +∞

a
f n’implique pas que f tend vers 0

en +∞.
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Contre exemple 1.9 :

Soit A =
+∞⋃
n=1

[n ; n+ 1
2n2 ] et f = 1A.

1 2 3 4

1

0

Soit f et g des fonctions continues par morceaux sur [a ; +∞[. Si
• 0 ⩽ f ⩽ g ;
•

∫ +∞
a

g converge ;

alors :
∫ +∞

a
f converge et ∫ +∞

a

f ⩽
∫ +∞

a

g.

Proposition 1.10

Soit α ∈ R, l’intégrale
∫ +∞

1

1
tα

dt converge si et seulement si α > 1.

Théorème 1.11 (intégrales de Riemann)

Soit α ∈ R, l’intégrale
∫ +∞

0
e−αt dt converge si et seulement si α > 0.

Théorème 1.12

II Intégrabilité sur un [a ; +∞[

Une fonction f est dite intégrable sur [a ; +∞[ lorsqu’elle est continue par mor-

ceaux sur [a ; +∞[ et
∫ +∞

a

|f | converge.

Définition 2.1

Vocabulaire : • On utilise indifféremment les expressions « f est intégrable sur
[a ; +∞[ » et « l’intégrale

∫ +∞
a

f converge absolument ».
• Une fonction f est dite intégrable en +∞ lorsqu’il existe a ∈ R tel que f est

intégrable sur [a ; +∞[.
Remarque 2.2 : Si f est de signe constant sur [a ; +∞[,

∫ +∞
a

f converge si et seule-
ment si f est intégrable sur [a ; +∞[.

Exemples 2.3 : • Pour α ∈ R, t 7→ 1
tα est intégrable sur [1 ; +∞[ si et seulement si

α > 1.
• Pour α ∈ R, t 7→ e−αt est intégrable sur [0 ; +∞[ si et seulement si a > 0.

Si f est intégrable sur [a ; +∞[, alors
∫ +∞

a
f converge.

Théorème 2.4

Remarque 2.5 : Cela signifie que si une intégrale converge absolument, alors elle
converge.

Remarque 2.6 : La réciproque est fausse, contre exemple la fonction f définie sur
[1 ; +∞[ telle que pour tout n ∈ N∗, ∀x ∈ [n ; n + 1[, f(x) = (−1)n

n .

Soit f et g des fonctions continues par morceaux sur [a ; +∞[ à valeurs dans K.
• Si f(t) =

t→+∞
O (g(t)) et g est intégrable en +∞, alors f est intégrable en +∞.

• Si f(t) =
t→+∞

o (g(t)) et g est intégrable en +∞, alors f est intégrable en +∞.

• Si f(t) ∼
t→+∞

g(t), alors l’intégrabilité de g en +∞ équivaut à celle de f .

Théorème 2.7 (de comparaison)

Attention : Il s’agit d’un critère d’intégrabilité, c’est à dire de convergence des in-
tégrales des valeurs absolues qui sont des fonctions positives.

On peut ainsi adapter le critère de Riemann aux intégrales sur [1 ; +∞[.
Méthode 2.8

Exemples 2.9 : Les intégrales suivantes sont elles convergentes ?

∫ +∞

1

sin x

x2 dx,

∫ +∞

2

1
ln x

dx et
∫ +∞

0

√
x

1 + x
dx
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III Intégrale généralisée sur un intervalle quel-
conque

III. A Intégrale sur un intervalle semi-ouvert

• Soit f une fonction continue par morceaux sur [a ; b[ (avec a ∈ R, b ∈ R∪ {+∞}
avec a < b) à valeurs dans K. On dit que l’intégrale

∫ b

a
f converge lorsque la

fonction x 7→
∫ x

a
f a une limite finie en b (à gauche).

• Soit f une fonction continue par morceaux sur ]a ; b] (avec a ∈ R∪ {−∞} , b ∈ R
avec a < b) à valeurs dans K. On dit que l’intégrale

∫ b

a
f converge lorsque la

fonction x 7→
∫ b

x
f a une limite finie en a (à droite).

Dans ce cas, cette limite est notée :
∫ b

a

f ou
∫ b

a

f(t) dt.

Définition 3.1

Exemples 3.2 : ∫ 1

0

1√
t

dt,

∫ 1

0
ln t dt et

∫ 0

−∞
e−αt dt

• Soit f ∈ Cpm([a ; b[) et c ∈ [a ; b[.
Les intégrales

∫ b

a
f et

∫ b

c
f sont de même nature et si elles convergent, alors :∫ b

a

f =
∫ c

a

f +
∫ b

c

f.

• Soit f ∈ Cpm(]a ; b]) et c ∈ [a ; b[.
Les intégrales

∫ b

a
f et

∫ c

a
f sont de même nature et si elles convergent, alors :∫ b

a

f =
∫ c

a

f +
∫ b

c

f.

Proposition 3.3

Remarque 3.4 : Si f ∈ Cpm([a ; b],K), alors∫ x

a

f(t) dt −−−→
x→b

∫ b

a

f(t) dt.

La définition de
∫ b

a
f pour f ∈ Cpm([a ; b[,K) ne crée donc pas d’ambigüité.

III. B Intégrale sur un intervalle ouvert

Soit f une fonction continue par morceaux sur ]a ; b[ à valeurs dans K avec
a, b ∈ R, a < b.

On dit que l’intégrale
∫ b

a

f converge lorsqu’il existe c ∈ ]a ; b[ tel que les inté-

grales
∫ c

a
f et

∫ b

c
f convergent. On note alors :

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Définition 3.5

Remarque 3.6 : Si les intégrales
∫ c

a
f et

∫ b

c
f convergent, il en est de même de

∫ d

a
f

et
∫ b

d
f pour tout d ∈ ]a ; b[. Il suffit donc de considérer un élément c quelconque

de ]a ; b[ pour conclure sur la nature de l’intégrale.
De plus

∫ c

a
f +

∫ b

c
f =

∫ d

a
f +

∫ b

d
f , l’intégrale

∫ b

a
f est donc bien définie sans

ambigüité.
Vocabulaire : Pour f ∈ Cpm(]a ; b[,K) et c ∈ ]a ; b[,

• lorsque
∫ b

c
f converge, on dit que l’intégrale converge en b ;

• lorsque
∫ c

a
f converge, on dit que l’intégrale converge en a.

Notation : Pour f à valeurs positive, on écrit
∫ b

a

f = +∞ lorsque l’intégrale di-
verge.

III. C Propriétés des intégrales généralisées

Soit f ∈ Cpm(I,K) telle que
∫

I
f converge, pour a, b, c dans I ou des extrémités de

I : ∫ b

a

f +
∫ c

b

f =
∫ c

a

f.

Proposition 3.7 (Relation de Chasles)

Soit f, g ∈ Cpm(I,R).
Si : 0 ⩽ f ⩽ g sur I et

∫
I

g converge, alors
∫

I
f converge et

∫
I

f ⩽
∫

I
g.

Proposition 3.8

Soit f, g ∈ Cpm(]a ; b[,K), λ, µ ∈ K.
Si

∫ b

a
f et

∫ b

a
g convergent, alors

∫ b

a
(λf + µg) converge et :∫ b

a

(λf + µg) = λ

∫ b

a

f + µ

∫ b

a

g.

Proposition 3.9 (Linéarité de l’intégrale)
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Soit f ∈ Cpm(]a ; b[,R). Si f est positive sur ]a ; b[ et l’intégrale
∫ b

a
f converge, alors :∫ b

a

f ⩾ 0.

De plus, si f est continue et positive sur ]a ; b[ (a < b) et
∫ b

a
f = 0, alors f = 0 sur

]a ; b[.

Proposition 3.10 (Positivité)

Soit f, g continues par morceaux sur ]a ; b[ telles que
∫ b

a
f et

∫ b

a
g convergent. Si

f ⩽ g, alors : ∫ b

a

f ⩽
∫ b

a

g.

Proposition 3.11 (Croissance)

III. D Intégration par parties

Soit f et g des fonctions de classe C1 sur I et a, b dans I ou des extrémités de I. Si
le produit fg a des limites finies en a et en b, alors les intégrales

∫ b

a
f ′g et

∫ b

a
fg′

sont de même nature et si elles convergent :∫ b

a

f(t)g′(t) dt = [fg]ba −
∫ b

a

f ′(t)g(t) dt,

où [fg]ba = lim
t→b

f(t)g(t) − lim
t→a

f(t)g(t).

Théorème 3.12

Exemple 3.13 : ∫ 1

0

√
1 − t2 dt

III. E Changement de variable
1) sur un segment

Soit f une fonction continue sur un intervalle I.
Soit φ une fonction de classe C1 sur un intervalle J telle que φ(J) ⊂ I. Soit a, b ∈ J .
On a : ∫ b

a

f
(
φ(u)

)
φ′(u) du =

∫ φ(b)

φ(a)
f(t) dt.

Théorème 3.14

Pour effectuer un changement de variable t = φ(u) :
1. mettre φ′(u) en facteur ;
2. exprimer le reste de l’intégrande en fonction de φ(u) ;
3. remplacer formellement :

• φ′(u) du par dt

• φ(u) par t

• changer les bornes.

Méthode 3.15

2) sur un intervalle quelconque

Soit f une fonction continue sur ]a ; b[ et φ : ]α ; β[ −→ ]a ; b[ bijective, strictement
croissante et de classe C1.
Alors les intégrales

∫ b

a
f(u) du et

∫ β

α
f
(
φ(t)

)
φ′(t) dt sont de même nature et en cas

de convergence : ∫ b

a

f(u) du =
∫ β

α

f
(
φ(t)

)
φ′(t) dt.

Théorème 3.16

Remarque 3.17 : Les hypothèses :
« φ : ]α ; β[ −→ ]a ; b[ bijective, strictement croissante et de classe C1 »
sont équivalentes à :
« φ ∈ C1(]α ; β[,R) strictement croissante, lim

t→α
φ(t) = a et lim

t→β
φ(t) = b. »

Soit f une fonction continue sur ]a ; b[ et φ : ]α ; β[ −→ ]a ; b[ bijective, strictement
décroissante et de classe C1.
Alors les intégrales

∫ b

a
f(u) du et

∫ β

α
f
(
φ(t)

)
φ′(t) dt sont de même nature et en cas

de convergence :∫ β

α

f
(
φ(t)

)
φ′(t) dt =

∫ a

b

f(u) du = −
∫ b

a

f(u) du.

Proposition 3.18

Exemple 3.19 : ∫ 1

0

dt√
t(1 − t)
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IV Fonctions intégrables

IV. A intégrale absolument convergentes et fonctions inté-
grables

Soit f ∈ Cpm(]a ; b[,K), on dit que
∫ b

a
f est absolument convergente lorsque∫ b

a
|f | converge.

Définition 4.1

Soit f ∈ Cpm(]a ; b[,K), si
∫ b

a
f est absolument convergente, alors elle est conver-

gente.

Théorème 4.2

Une fonction f est dite intégrable sur l’intervalle ]a ; b[ lorsqu’elle est continue
par morceaux sur ]a ; b[ et que l’intégrale

∫ b

a
f converge absolument.

Définition 4.3

Vocabulaire : Soit f ∈ Cpm(]a ; b[,K) et c ∈ ]a ; b[,

• on dit que f est intégrable en b lorsque f est intégrable sur [c ; b[ ;
• on dit que f est intégrable en a lorsque f est intégrable sur ]a ; c].

Notation : Pour I un intervalle quelconque et f intégrable sur I, on note
∫

I

f son
intégrale sur I.

L’ensemble des fonctions intégrables sur I à valeurs dans K est un K-espace vectoriel
noté L1(I,K).

Proposition 4.4

Remarque 4.5 : l’application f 7→
∫

I
f est une forme linéaire sur L1(I,K).

Soit f ∈ L1(I,K), alors : ∣∣∣∣∫
I

f

∣∣∣∣ ⩽ ∫
I

|f |

Proposition 4.6 (Inégalité triangulaire)

IV. B Comparaison

Soit f et g des fonctions continues par morceaux sur ]a ; b[ à valeurs dans K.
• Si f(x) =

x→b
O (g(x)) et g est intégrable en b, alors f est intégrable en b.

• Si f(x) =
x→b

o (g(x)) et g est intégrable en b, alors f est intégrable en b.

• Si f(x) ∼
x→b

g(x), alors l’intégrabilité de g en b équivaut à celle de f .

• Si f(x) =
x→a

O (g(x)) et g est intégrable en a, alors f est intégrable en a.

• Si f(x) =
x→a

o (g(x)) et g est intégrable en a, alors f est intégrable en a.

• Si f(x) ∼
x→a

g(x), alors l’intégrabilité de g en a équivaut à celle de f .

Théorème 4.7

IV. C Intégrales de Riemann

Pour α ∈ R, la fonction t 7→ 1
tα est intégrable sur ]0 ; 1] si et seulement si α < 1.

Théorème 4.8

Remarque 4.9 : Une fonction f est intégrable en a (respectivement en b) si et seule-
ment si t 7→ f(a + t) (resp. t 7→ f(b − t)) est intégrable en 0.

Soit a, b ∈ R et α ∈ R, alors :

• l’intégrale
∫ b

a

1
|t − a|α

dt converge si et seulement si α < 1 ;

• l’intégrale
∫ b

a

1
|b − t|α

dt converge si et seulement si α < 1 ;

Théorème 4.10

Exemple 4.11 : Montrer que l’intégrale suivante converge puis la calculer :

∫ +∞

0

ln t

1 + t2 dt
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V Intégration des relations de comparaison
V. A Cas convergent : comparaison des restes

Soit b ∈ R ∪ {+∞}, f ∈ Cpm([a ; b[,K) et φ ∈ Cpm([a ; b[,R) avec φ à valeurs
positives et intégrable sur [a ; b[.

• Si f(t) =
t→b

O (φ(t)), alors f est intégrable sur [a ; b[ et
∫ b

x
f =

x→b
O
(∫ b

x
φ
)

.

• Si f(t) =
t→b

o (φ(t)), alors f est intégrable sur [a ; b[ et
∫ b

x
f =

x→b
o
(∫ b

x
φ
)

.

• Si f(t) ∼
t→b

φ(t), alors f est intégrable sur [a ; b[ et
∫ b

x
f ∼

x→b

∫ b

x
φ.

Proposition 5.1

Remarque 5.2 : Même résultats en a pour f ∈ Cpm(]a ; b],K).

Exemple 5.3 : Donner un équivalent en +∞ de x 7→
∫ +∞

x
Arctan t

t
√

t
dt.

V. B Cas divergent : comparaison des intégrales partielles

Soit b ∈ R ∪ {+∞}, f ∈ Cpm([a ; b[,K) et φ ∈ Cpm([a ; b[,R) avec φ à valeurs
positives et non intégrable sur [a ; b[.
• Si f(t) =

t→b
O (φ(t)), alors

∫ x

a
f =

x→b
O
(∫ x

a
φ
)
.

• Si f(t) =
t→b

o (φ(t)), alors
∫ x

a
f =

x→b
o
(∫ x

a
φ
)
.

• Si f(t) ∼
t→b

φ(t), alors
∫ x

a
f ∼

x→b

∫ x

a
φ.

Proposition 5.4

Exemple 5.5 : Déterminer, à l’aide d’une intégration par parties, un équivalent
simple quand x → +∞ de

∫ x

2

dt

ln t
.
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