CCINP TSI 2024

Partie I — Des algorithmes pour colorier un graphe

I.1 Introduction sur un exemple

Q.1 Pour construire la matrice d’adjacence, on proceéde ligne par ligne. Par exemple, la premiere ligne
(correspondant au sommet 0), on met 1 zéro a la premiere colonne (le sommet O n’a pas d’aréte commune
avec le sommet 0), puis un 1 a la deuxieme colonne (il y a une aréte entre le sommet O et le sommet 1), puis
0 (pas d’aréte de 0 a 2) et 1 (aréte entre O et 3). En procédant de méme a chaque ligne, on obtient la matrice
d’adjacence suivante :

(0101101 1)
10110000
01010000
11101000
10010111
00001011
10001101
\1 000111 0

Q.2
]“'A = [[]‘7 3’ 4’ 6’ 7]) [O) 2’ 3]’ [1’ 3]3 [0’ 17 25 4]5 [05 37 5’ 6’ 7]’ [4’ 6) 7]) [O) 4’ 57 7]) [07 45 57 6]]

Q.3 Un avantage de la matrice d’adjacence est qu’il est facile de savoir si deux sommets i et j sont reliés :
il suffit d’avoir 'élément de matrice M;;. Cette recherche se fait en temps constant.

Linconvénient est que cette matrice demande un grand espace mémoire (s'il y a n sommets, il faut n® coeffi-
cients), ce qui peut étre inutile si le graphe présente peu d’arétes (le nombre de coefficients non nuls est égal
au double du nombre d’arétes).

Un avantage de la liste d’adjacence est son efficacité pour stocker les informations (seules les arétes comptent),
mais pour savoir si i et j sont reliés, il faut explorer toute la liste LA[i] pour vérifier la présence de j.

Q.4

1.2 Tester si une coloration est valide

Q.5 Il y avait plusieurs possibilités pour cette fonction, faites simple !

def voisins(i,j,LA)
return j in LA[i]



Q.6 A priori I'’énoncé voulait qu'on écrive la fonction suivante :

def coloration_valide(LA, C)
for i in range(len(LA))
for j in range(len(LA)) : # la boucle peut aussi commencer a i+l
if voisins(i, j, LA) and C[i] == C[j]
return False
return True

mais on pouvait aussi proposer :

def coloration_valide(LA ,C)
for i in range(len(LA))
for j in LA[i]
if C[i] == C[j]
return False
return True

Q.7 Dans le pire des cas, la coloration est valide et tous les sommets sont reliés entre eux deux a deux. Dans

n(n—1)

ce cas, les — paires de villes sont testées, donc la complexité temporelle est quadratique.



