MP2I du lycée Victor Hugo de Besancon,
Année scolaire 2025/2026.

Corrigé du DL n° 4.

Probléeme 1

Partie 1

1. Calculs laissés au lecteur.
2. 0 pour @ et 1 pour ®.
3. Soit a € Z/nZ. On a (n —a) +a = n = 0 mod n, donc |(n—a) P a=0], donc, comme & est

commutative et n — a € Z/nZ, |'opposé de a est n — a‘ .

4. Les lois @ et ® sont des lci associatives, commutatives sur Z/nZ, et @ est distributive sur @. Elles
admettent chacune un élément neutre, et tout élément admet un symétrique pour @ : ¢’est un anneau
commutatif.

5. Soit a € Z/nZ, a # 0.

— L’élément neutre de ® est 1, et ® est commutative, donc par définition, a est inversible si et
seulement §'il existe b € Z/nZ tel que a ® b = 1, ce qui par définition signifie ab =1 mod n.

— Supposons a inversible. Il existe donc bZ/nZ tel que ab = 1 mod n, donc il existe ¢ € Z tel que
ab — ¢n = 1. Par le théoreme de Bézout, a An = 1.

— Réciproquement, si a A n = 1, la relation de Bézout nous donne l'existence de u,v € Z tels que
au+nv =1, donc au =1 mod n. Soit alors b le reste de la division de u par n. Alors b € Z/nZ,
et b =wu mod n, donc par produit de congruences entieres, ab = au mod n, donc ab =1 mod n,
et a est inversible dans Z/nZ.

6. On sait que (Z/nZ,®,®) est un anneau commutatif. C’est donc un corps si et seulement si tout
élément différent de 0 est inversible, donc par 1(b), si et seulement si tout a € [1,n — 1] est premier
avec n, donc si et seulement si n est premier.

7. Supposons n non premier. Il existe donc a,b € [2,n — 1] tels que ab = n, donc a,b € Z/nZ, a,b # 0,
et a®@b=0:aetbsont des diviseurs de 0, et Z/nZ n’est pas integre.

Partie 3 : carrés dans Z/nZ

1. Soit p un nombre premier. Pour tout a € Z, on a a? = a mod p. On en déduit, comme n est premier,
qui si a € (Z/nZ)", alors a™ = a dans Z/nZ (petit théoréme de Fermat). Mais a est inversible, donc
on peut simplifier par a la relation précédente, et ¢! = 1.

2. — Soient a,b € (Z/nZ)". Alors
A= = > —b=0 < (a—b)(a+b)=0 <= a—b=0oua+b=0,

ou la derniere équivalence provient du fait que n est premier, donc Z/nZ est un corps, donc n’a
pas de diviseur de 0.

— On en déduit que b* admet comme antécédents b et ©b(=n — b). Mais b # n — b car n est impair,
donc b? admet exactement deux antécédents.



— Comme n est premier, Z/nZ est un corps et (Z/nZ)" = [1,n — 1], donc (Z/nZ)" a n — 1 éléments.
D’apres 2(b), pour tout a € [1,n — 1], a et n — a ont le méme carré, et si b & {a,n — a}, a® # V°.
Iy a donc %51 carrés dans (Z/nZ)". Mais 0> =0, donc il y a 252 + 1 = 2t carrés dans Z/nZ.
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3. — Soit a € (Z/nZ)". Supposons que a soit un carré modulo n. Il existe donc b € Z/nZ tel que a = b?
dans Z/nZ.0n en déduit que 't =l =1 d’apres la question 1.

n

— On en déduit que les 221 carrés de (Z/nZ)" sont solutions de Iéquation t"z" = 1 (d’inconnue

n—1

t € Z/nZ), qui a au plus 2= solutions, qui sont donc les carrés de (Z/nZ)"*. Donc si s = 1, a
est un carré modulo n.

4. —1 est un carré modulo n s’il existe x € Z tel que —1 = x

2

2 mod n. On utilise la question 3 :

n—1 1

(—=1)2 =1 modn <= %~=0 mod2 <= n—1=0 mod 4.
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Probléme 2

Partie 1

1. Montrons que G NR% # (. Comme G n’est pas réduit a 0, il existe  # 0 dans G. Si x > 0, alors
r € GNRY. Sinon, —x € G puisque G est un sous-groupe de (R, +). Or, —z > 0 donc —z € G NR%
qui est un ensemble non vide. Comme il est minoré par 0, il admet une borne inférieure a > 0.

2. (a) —

Comme a > 0, on a 2a > a. On en déduit que 2a n’est pas un minorant de G N R (car a est
le plus grand des minorants), donc qu’il existe x € G NRY tel que = < 2a.

Comme @ est un minorant de G NRY, on a a < z. Mais on a supposé que a € G, donc a # z,
et a < x.

Comme a < x,  n’est pas un minorant de G MR : il existe donc y € GNRY tel que y < z,
et de méme, a < y.

Par définition de y, on a y < x, donc z —y > 0. Maison aa < y < x < 2a, donc x —y <
2a —a = a.

Comme y € G et que G est un sous-groupe de (R,+), on a —y € G. Mais = € G, donc (sous-
groupe de (R, +)), 2 —y=xz+(-y) € G. Or, z —y > 0, donc  — y € GNR’. Par définition
de a, on a donc a < x —y. Or, x —y < a : contradiction. On en déduit que I’hypothese a € G

est absurde, donc que .

Comme a € GG, on montre facilement que aZ C G.
x
Réciproquement soit x € G, z > 0. Soit p = L%J € N. Par définition de p, onap < — <p+ 1.
a

Or,a>0,doncap <x<ap+aetdonc0<x—ap <a Commeaéc G,etp€eZ onaap € G.
Or, x € G par définition, donc car GG est un sous-groupe de (R, +). Or, x —ap < a,
donc par définition de a, x — ap = 0, 1.e. x = ap, et par stabilité par passage a I'opposé, on a
G C aZ.

3.(a) Comme z —y > 0 et 0 = inf(G NRY), 2 —y n'est pas un minorant de G N RY, donc il existe
re GNRL telque 0 <o <z —y.

(b) Soit n = LEJ +1€Z. On adonc

o Y
n—1<<<n.
z

Or, x > 0, donc nx — x < y < nx puisque x > 0. Mais < z — y, donc

ntc=Mn—-lrz+rz<n—-1Dz+(z—y)<y+(z—y) =z

et donc y < nz < z. Or, nx € G puisque G est un sous-groupe de (R, +), donc pour tous y,z € R
avec y < z, il existe 2’ € G tel que y < 2’ < z : G est dense dans R.



Partie 2

1. Ona0=040.w € G,. De plus, si a,d’,b,b/ € Z, on a
(a4+bw)+ (d +Vw)=(a+d)+ (b+V)weG, et —(a+bw)=—-a—1lweQG,
puisque Z est un sous-groupe de (R, +), donc G, est un sous-groupe de (R, +).
2. — Soient u,v € Z tels que up + vg = 1. On a alors
1 up+ovgq P

= — =v4u-=v+uw € G,.
q q q

Comme % est un élément du sous-groupe G, de R, pour tout n € Z, % € G, (cf partie Al) i.e.

1
7 C G,
q
— Réciproquement, Soient a,b € Z. Alors
aqg+bp 1

a+bw=a+bl = € -7,
q q q

car aq + bp € Z. Donc G, = %Z.

3. On raisonne par l'absurde. D’apres la partie 1, comme G # {0} et que G, n’est pas dense dans R, il
existe a € R tel que G, = aZ. Comme w =0+ 1 X w, on aw € G, : il existe donc n € Z tel que

w=na. Or, w # 0 (car w € Q), donc a = «. Mais, w € Q, et n € Z, donc © ¢ Q, i.e..

Or, puisque 1 = 140 x w. Il existe donc n € Z tel que 1 = na. Comme 1 # 0, on a n # 0,
donc oo = % € Q : contradiction : ‘Gw est dense dans ]R‘ .

Partie 3

1. Lorsqu’on déplie une fois le billard horizontalement vers la droite, ’abscisse de 'image est 2¢ — zy. Un
nouveau dépliage horizontal vers la droite donne comme abscisse 2¢ + z(, 'ordonnée ne changeant pas.
Donc si a > 0, 2a dépliages vers la droite donnent comme abscisse 2af 4+ xg, et de méme pour a < en
dépliant vers la gauche.

On fait de méme pour les dépliages verticaux.
2. Le repere étant orthonormal, on a

~lyo+20L — p(xo + 2al) —m| | |yo — pro —m — 2apl + 2bL|

d(Xuw, D) = =
(Xap, D) e T
pt . pl
3. On a pour a,b € Z, 2bL + 2apl = 2L (b—l— af), donc |G =2LG, |, ou |w = Tl Cela prouve en

particulier que G est un sous-groupe de R.

Yo = prg —m
2L

(car e4/1+p?/(2L) > 0). On en déduit que

lyo — pro —m — 2La — 2bpl| < /1 + p.

4. Supposons w € Q. Alors, G, est dense dans R. En posant t = € R, il existe a, b € Z tels

e/1+p?

t— b
que [t — (a+ bw)| < 5T
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En posant @' = b et i = —a, on voit que d(Xyp, D) < £ : on en déduit que si pf est irrationnel | ,

alors la trajectoire est dense.



