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Corrigé du DL n◦ 4.

Problème 1

Partie 1

1. Calculs laissés au lecteur.

2. 0 pour ⊕ et 1 pour ⊗.

3. Soit a ∈ Z/nZ. On a (n − a) + a = n ≡ 0 mod n, donc (n− a)⊕ a = 0 , donc, comme ⊕ est

commutative et n− a ∈ Z/nZ, l’opposé de a est n− a .

4. Les lois ⊕ et ⊗ sont des lci associatives, commutatives sur Z/nZ, et ⊗ est distributive sur ⊕. Elles
admettent chacune un élément neutre, et tout élément admet un symétrique pour ⊕ : c’est un anneau
commutatif.

5. Soit a ∈ Z/nZ, a 6= 0.
— L’élément neutre de ⊗ est 1, et ⊗ est commutative, donc par définition, a est inversible si et

seulement s’il existe b ∈ Z/nZ tel que a⊗ b = 1, ce qui par définition signifie ab ≡ 1 mod n.
— Supposons a inversible. Il existe donc bZ/nZ tel que ab ≡ 1 mod n, donc il existe ℓ ∈ Z tel que

ab− ℓn = 1. Par le théorème de Bézout, a ∧ n = 1.
— Réciproquement, si a ∧ n = 1, la relation de Bézout nous donne l’existence de u, v ∈ Z tels que

au+ nv = 1, donc au ≡ 1 mod n. Soit alors b le reste de la division de u par n. Alors b ∈ Z/nZ,
et b ≡ u mod n, donc par produit de congruences entières, ab ≡ au mod n, donc ab ≡ 1 mod n,
et a est inversible dans Z/nZ.

6. On sait que (Z/nZ,⊕,⊗) est un anneau commutatif. C’est donc un corps si et seulement si tout
élément différent de 0 est inversible, donc par 1(b), si et seulement si tout a ∈ [[1, n − 1]] est premier
avec n, donc si et seulement si n est premier.

7. Supposons n non premier. Il existe donc a, b ∈ [[2, n− 1]] tels que ab = n, donc a, b ∈ Z/nZ, a, b 6= 0,
et a⊗ b = 0 : a et b sont des diviseurs de 0, et Z/nZ n’est pas intègre.

Partie 3 : carrés dans Z/nZ

1. Soit p un nombre premier. Pour tout a ∈ Z, on a ap ≡ a mod p. On en déduit, comme n est premier,
qui si a ∈ (Z/nZ)∗, alors an = a dans Z/nZ (petit théorème de Fermat). Mais a est inversible, donc
on peut simplifier par a la relation précédente, et an−1 = 1.

2. — Soient a, b ∈ (Z/nZ)∗. Alors

a2 = b2 ⇐⇒ a2 − b2 = 0 ⇐⇒ (a− b)(a + b) = 0 ⇐⇒ a− b = 0 ou a+ b = 0,

où la dernière équivalence provient du fait que n est premier, donc Z/nZ est un corps, donc n’a
pas de diviseur de 0.

— On en déduit que b2 admet comme antécédents b et ⊖b(= n− b). Mais b 6= n− b car n est impair,
donc b2 admet exactement deux antécédents.
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— Comme n est premier, Z/nZ est un corps et (Z/nZ)∗ = [[1, n− 1]], donc (Z/nZ)∗ a n− 1 éléments.
D’après 2(b), pour tout a ∈ [[1, n− 1]], a et n− a ont le même carré, et si b 6∈ {a, n− a}, a2 6= b2.
Il y a donc n−1

2
carrés dans (Z/nZ)∗. Mais 02 = 0, donc il y a n−1

2
+ 1 = n+1

2
carrés dans Z/nZ.

3. — Soit a ∈ (Z/nZ)∗. Supposons que a soit un carré modulo n. Il existe donc b ∈ Z/nZ tel que a = b2

dans Z/nZ.On en déduit que a
n−1

2 = bn−1 = 1 d’après la question 1.

— On en déduit que les n−1

2
carrés de (Z/nZ)∗ sont solutions de l’équation t

n−1

2 = 1 (d’inconnue

t ∈ Z/nZ), qui a au plus n−1

2
solutions, qui sont donc les carrés de (Z/nZ)∗. Donc si a

n−1

2 = 1, a
est un carré modulo n.

4. −1 est un carré modulo n s’il existe x ∈ Z tel que −1 ≡ x2 mod n. On utilise la question 3 :
(−1)

n−1

2 ≡ 1 mod n ⇐⇒ n−1

2
≡ 0 mod 2 ⇐⇒ n− 1 ≡ 0 mod 4.

Problème 2

Partie 1

1. Montrons que G ∩ R∗

+ 6= ∅. Comme G n’est pas réduit à 0, il existe x 6= 0 dans G. Si x > 0, alors
x ∈ G ∩ R∗

+. Sinon, −x ∈ G puisque G est un sous-groupe de (R,+). Or, −x > 0 donc −x ∈ G ∩ R∗

+

qui est un ensemble non vide. Comme il est minoré par 0, il admet une borne inférieure a > 0.

2. (a) — Comme a > 0, on a 2a > a. On en déduit que 2a n’est pas un minorant de G ∩ R∗

+ (car a est
le plus grand des minorants), donc qu’il existe x ∈ G ∩ R∗

+ tel que x < 2a.
— Comme a est un minorant de G ∩ R∗

+, on a a 6 x. Mais on a supposé que a 6∈ G, donc a 6= x,
et a < x.

— Comme a < x, x n’est pas un minorant de G ∩ R∗

+ : il existe donc y ∈ G ∩ R∗

+ tel que y < x,
et de même, a < y.

— Par définition de y, on a y < x, donc x − y > 0. Mais on a a < y < x < 2a, donc x − y <
2a− a = a.

— Comme y ∈ G et que G est un sous-groupe de (R,+), on a −y ∈ G. Mais x ∈ G, donc (sous-
groupe de (R,+)), x− y = x+ (−y) ∈ G. Or, x− y > 0, donc x− y ∈ G ∩ R∗

+. Par définition
de a, on a donc a 6 x− y. Or, x− y < a : contradiction. On en déduit que l’hypothèse a 6∈ G
est absurde, donc que a ∈ G .

(b) — Comme a ∈ G, on montre facilement que aZ ⊂ G.

— Réciproquement soit x ∈ G, x > 0. Soit p =
⌊

x

a

⌋

∈ N. Par définition de p, on a p 6
x

a
< p+ 1.

Or, a > 0, donc ap 6 x < ap+ a et donc 0 6 x− ap < a. Comme a ∈ G, et p ∈ Z, on a ap ∈ G.
Or, x ∈ G par définition, donc x− ap ∈ G car G est un sous-groupe de (R,+). Or, x−ap < a,
donc par définition de a, x − ap = 0, i.e. x = ap, et par stabilité par passage à l’opposé, on a
G ⊂ aZ.

3. (a) Comme z − y > 0 et 0 = inf(G ∩ R∗

+), z − y n’est pas un minorant de G ∩ R∗

+, donc il existe
x ∈ G ∩ R∗

+ tel que 0 < x < z − y.

(b) Soit n =
⌊y

x

⌋

+ 1 ∈ Z. On a donc

n− 1 6
y

x
< n.

Or, x > 0, donc nx− x 6 y < nx puisque x > 0. Mais x < z − y, donc

nx = (n− 1)x+ x < (n− 1)x+ (z − y) 6 y + (z − y) = z,

et donc y < nx < z. Or, nx ∈ G puisque G est un sous-groupe de (R,+), donc pour tous y, z ∈ R

avec y < z, il existe x′ ∈ G tel que y < x′ < z : G est dense dans R.
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Partie 2

1. On a 0 = 0 + 0.ω ∈ Gω. De plus, si a, a′, b, b′ ∈ Z, on a

(a + bω) + (a′ + b′ω) = (a + a′) + (b+ b′)ω ∈ Gω et − (a+ bω) = −a− bω ∈ Gω

puisque Z est un sous-groupe de (R,+), donc Gω est un sous-groupe de (R,+).

2. — Soient u, v ∈ Z tels que up+ vq = 1. On a alors

1

q
=

up+ vq

q
= v + u

p

q
= v + uω ∈ Gω.

Comme 1

q
est un élément du sous-groupe Gω de R, pour tout n ∈ Z, n

q
∈ Gω, (cf partie AI) i.e.

1

q
Z ⊂ Gω.

— Réciproquement, Soient a, b ∈ Z. Alors

a + bω = a+ b
p

q
=

aq + bp

q
∈

1

q
Z,

car aq + bp ∈ Z. Donc Gω = 1

q
Z.

3. On raisonne par l’absurde. D’après la partie 1, comme G 6= {0} et que Gω n’est pas dense dans R, il
existe α ∈ R∗

+ tel que Gω = αZ. Comme ω = 0 + 1 × ω, on a ω ∈ Gω : il existe donc n ∈ Z tel que

ω = nα. Or, ω 6= 0 (car ω 6∈ Q), donc α = ω
n
. Mais, ω 6∈ Q, et n ∈ Z, donc ω

n
6∈ Q, i.e. α 6∈ Q .

Or, 1 ∈ Gω puisque 1 = 1+0×ω. Il existe donc n ∈ Z tel que 1 = nα. Comme 1 6= 0, on a n 6= 0,

donc α = 1

n
∈ Q : contradiction : Gω est dense dans R .

Partie 3

1. Lorsqu’on déplie une fois le billard horizontalement vers la droite, l’abscisse de l’image est 2ℓ−x0. Un
nouveau dépliage horizontal vers la droite donne comme abscisse 2ℓ+x0, l’ordonnée ne changeant pas.
Donc si a > 0, 2a dépliages vers la droite donnent comme abscisse 2aℓ+ x0, et de même pour a < en
dépliant vers la gauche.

On fait de même pour les dépliages verticaux.

2. Le repère étant orthonormal, on a

d(Xab, D) =
|y0 + 2bL− p(x0 + 2aℓ)−m|

√

1 + p2
=

|y0 − px0 −m− 2apℓ+ 2bL|
√

1 + p2
.

3. On a pour a, b ∈ Z, 2bL + 2apℓ = 2L

(

b+ a
pℓ

L

)

, donc G = 2LGω , où ω =
pℓ

L
. Cela prouve en

particulier que G est un sous-groupe de R.

4. Supposons ω 6∈ Q. Alors, Gω est dense dans R. En posant t =
y0 − px0 −m

2L
∈ R, il existe a, b ∈ Z tels

que |t− (a+ bω)| <
ε
√

1 + p2

2L
(car ε

√

1 + p2/(2L) > 0). On en déduit que

|y0 − px0 −m− 2La− 2bpℓ| < ε
√

1 + p2.

En posant a′ = b et b′ = −a, on voit que d(Xa′b′ , D) < ε : on en déduit que si
pℓ

L
est irrationnel ,

alors la trajectoire est dense.
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