Calcul matriciel

Dans tout le chapitre K désigne l'ensemble des nombres réels ou des nombres complexes.

I Matrices à coefficients dans \mathbb{K} .

1) Définitions:

Soient n et p deux entiers naturels.

Définition 1

On appelle matrice de taille $n \times p$ tout tableau A d'éléments de \mathbb{K} comportant n lignes et

On note alors $A=(a_{ij})$ $\underset{1 \leq i \leq n}{\underset{1 \leq j \leq p}{1}}$ où a_{ij} désigne l'élément à la i-eme ligne et j-eme colonne dans le tableau A.

On présentera également A sous la forme :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & & & \vdots \\ \vdots & & & \vdots \\ a_{n1} & \dots & \dots & a_{np} \end{pmatrix}$$

Les éléments de la matrice A sont appelés "coefficients" de A. L'ensemble des matrices de taille $n \times p$ à coefficients dans \mathbb{K} est noté $\mathcal{M}_{n,p}(\mathbb{K})$.

Exemple:

- $A = \begin{pmatrix} 2 & 7 & 6 \\ 1 & 5 & 1 \end{pmatrix}$ est une matrice appartenant à $B = \begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$ est une matrice appartenant à

Remarque: deux matrices sont égales si et seulement si elles ont la même taille et les mêmes éléments dans le même ordre :

 $\begin{pmatrix} 1 & 2 \end{pmatrix}$ est différente de $\begin{pmatrix} 2 & 1 \end{pmatrix}$ et est différente de $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

2) Matrices particulières, vocabulaire :

▶ Matrice nulle : La matrice $O_{n,p} \in \mathcal{M}_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls. Exemple:

$$O_{2,3} =$$

▶ Matrice ligne : On appelle matrice ligne toute $M \in \mathcal{M}_{1,n}(\mathbb{K})$.

Exemple: $M = \begin{pmatrix} 2 & 4 & 1 \end{pmatrix}$ est une matrice ligne.

Lorsqu'on extrait la i ème ligne d'une matrice A, on parle du ieme vecteur ligne, souvent noté L_i .

Exemple: si $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$, () est le 2e vecteur ligne de M, que l'on noterait donc L_2

1

► Matrice colonne :

Si $M \in \mathcal{M}_{n,1}(\mathbb{K})$, on parle de matrice colonne.

On définit, de la même façon que pour les lignes, le jeme vecteur colonne d'une matrice lorsqu'on extrait la j eme colonne. On le note souvent C_j .

► Matrice carrée :

Une matrice M est dite carrée si $M \in \mathcal{M}_{n,n}(\mathbb{R})$: elle a donc le même nombre de lignes et de colonnes.

On note simplement $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées.

Exemple:

$$A = \left(\begin{array}{ccc} 2 & 7 & 6 \\ 9 & 5 & 1 \\ 4 & 3 & 8 \end{array}\right) \in$$

► Matrice scalaire :

Si la matrice n'est constituée que d'une seule ligne et une seule colonne, on dit que la matrice est scalaire.

Exemple: A = (2) est une matrice scalaire

► Matrice identité :

On appelle identité la matrice $I_n \in \mathcal{M}_n(\mathbb{K})$, qui est nulle, sauf sur la diagonale, constituée uniquement de 1.

On a alors

$$I_n =$$
 par exemple : $I_4 =$

II Opérations dans $\mathcal{M}_{n,p}(\mathbb{K})$.

1) Structure vectorielle:

a) Addition dans $\mathcal{M}_{n,p}(\mathbb{K})$:

Définition 2

Soit
$$A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$$
 et $B = (b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ deux matrices de $\mathcal{M}_{n,p}(\mathbb{K})$.

2

On définit l'opération A+B par

$$A + B = () \underset{1 \le j \le p}{\underset{1 \le i \le n}{\underset{1 \le j \le p}{1}}} =$$

On dit qu'on "additionne terme à terme".

Exemple:

$$\left(\begin{array}{ccc} 3 & -1 & 2 \\ 1 & 0 & 4 \end{array}\right) + \left(\begin{array}{ccc} 1 & 0 & 2 \\ -1 & 3 & -3 \end{array}\right) =$$

Remarques:

- 1. Si a_{ij} et b_{ij} sont des éléments de \mathbb{K} , $a_{ij} + b_{ij}$ est un élément de \mathbb{R} également, ainsi A + B est une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$, tout comme A et B. On dit que $\mathcal{M}_{n,p}(\mathbb{K})$ est stable pour l'opération +.
- 2. De part sa définition, l'opération d'addition sur les matrices hérite des propriétés de l'addition sur $\mathbb R$ ou $\mathbb C$, on a ainsi :

- 3. Attention : si les matrices sont de tailles différentes, on ne peut pas les additionner...
- b) Produit par un scalaire:

Définition 3

Soit $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ et $\lambda \in \mathbb{K}$.

On définit λA par

$$\lambda A = (\lambda a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Autrement dit : on multiplie tous les termes par λ .

Exemples:

$$\bullet \ 3 \left(\begin{array}{ccc} 1 & 4 & 5 \\ 2 & -1 & 3 \end{array} \right) - 2 \left(\begin{array}{ccc} 3 & 6 & 2 \\ -2 & 4 & -3 \end{array} \right) =$$

Remarques:

- ▶ Comme pour la somme, le produit par un scalaire est stable : on a bien $\lambda A \in \mathcal{M}_{n,p}(\mathbb{K})$.
- ▶ Cette opération hérite à nouveau des propriétés du produit sur ℝ ou ℂ, c'est à dire :

 $ightharpoonup \mathcal{M}_{n,p}(\mathbb{K})$, muni de ces opérations d'addition et de multiplication par un scalaire, forme ce que l'on appelle un "espace vectoriel" : son comportement vis a vis de ces opérations est le même que celui que vous connaissez pour les vecteurs...

c) Matrices élémentaires

Définition 4

On appelle **symbole de Kronecker** le nombre $\delta_{i,j}$, défini par $\delta_{ij} = 1$ si i = j, et $\delta_{ij} = 1$ si i = j.

Exemples:

▶
$$\delta_{0,1} =$$
 , $\delta_{3,3} =$

 \blacktriangleright La matrice I_n (la matrice identité) peut être décrite sous la forme

$$I_n = (\delta_{i,j})$$
 $\underset{1 \leq i \leq n}{\overset{1}{\leq} i \leq n}$

Les coefficients diagonaux sont les $\delta_{i,i}$, et $\delta_{i,i}=1$ et les coefficients hors diagonales sont $\delta_{i,j}$ avec $i\neq j$, c'est à dire $\delta_{i,j}=0$.

Définition 5

Soient $n, p \in \mathbb{N}^*$. Pour $1 \le i \le n$ et $1 \le j \le p$, on pose $E_{i,j}$ la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont le coefficient à la place (k,ℓ) vaut $\delta_{i,k}\delta_{\ell,j}$.

Autrement dit, $E_{i,j}$ est la matrice telle que

Ces matrices sont appelées matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{K})$.

Exemple:

Les matrices élémentaires de $\mathcal{M}_{2,3}(\mathbb{K})$ sont :

Propriété 1

Toute matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ s'écrit comme combinaison linéaire de matrices élémentaires. Plus précisément, si $A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$, alors

$$A = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} a_{ij} E_{ij}$$

 \triangleright Preuve :

Exemple:

$$A = \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} =$$

2) Produit matriciel

a) Définition:

Définition 6

Soient n, p et q trois entiers naturels. Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. On définit la matrice C = AB comme la matrice (c_{ij}) $1 \le i \le n \atop 1 \le j \le q$ $\in \mathcal{M}_{n,q}(\mathbb{K})$ telle que

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

En pratique:

On peut présenter l'opération de la manière suivante :

Propriété 2

Sous condition de compatibilité des tailles des matrices A, B et C, on a :

- (i) (A+B)C =
- (ii) A(B+C) =(iii) pour tout $\lambda \in \mathbb{K}$, $\lambda(AB) =$ (iv) (AB)C =

 \triangleright Preuve : Montrons (i) (les autres se démontrent de la même façon)

b) Attention aux pièges!

$$\blacktriangleright \text{ Soit } A = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \text{ et } B = \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right).$$

Alors
$$AB =$$
 et $BA =$

Ainsi, le produit n'est pas

▶ Soient
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

On a AB =

On dit que A et B sont des diviseurs de zero : ceci n'existe pas chez les nombres réels (ni chez les nombres complexes).

▶ Soit
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$.

Alors
$$AB =$$
 et $CB =$

Conclusion:

c) Produit de matrices élémentaires

Soient n, p et q trois entiers naturels non nuls

Pour tout $(i,j) \in [1,n] \times [1,p]$, on note E_{ij} les matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{K})$.

De même, pour tout $(k,l) \in [1,p] \times [1,q]$, on note F_{kl} les matrices élémentaires de $\mathcal{M}_{p,q}(\mathbb{K})$.

Que vaut le produit $E_{i,j}F_{k,l}$ pour les différentes valeurs de i,j,k,l?

3) Transposée d'une matrice :

a) Définition:

On munit $\mathcal{M}_{n,p}(\mathbb{K})$ d'une dernière opération :

Définition 7

Soit $A=(a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle transposée de A la matrice $A^T=(b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ définie par $b_{ij}=a_{ji}$.

Plus simplement : A^T est la matrice A dont on a inversé les lignes et les colonnes.

Exemple :
$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 3 & 0 & -1 \end{array} \right) \text{ a pour transposée } A^T =$$

$$B = \left(\begin{array}{ccc} 3 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -1 & 6 \end{array} \right)$$
a pour transposée $B^T =$

Remarques:

L'opération de transposition est une "bijection involutive" : c'est une bijection d'inverse elle même. En effet, $(A^T)^T=$

b) Transposée et addition:

Propriété 3

Soient A et B deux matrices de $\mathcal{M}_{n,p}(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

Alors
$$(\lambda A)^T =$$

et $(A+B)^T =$

$$et (A+B)^T =$$

On dit que l'opération de transposition est linéaire.

$\triangleright Preuve$:

La preuve est immédiate.

c) Transposée et produit :

Proposition 1

Soit
$$A \in \mathcal{M}_{n,p}(\mathbb{K})$$
 et $B \in \mathcal{M}_{p,q}(\mathbb{K})$.
Alors $(AB)^T =$

 $\triangleright Preuve$:

◁

III Cas des matrices carrées

- 1) L'ensemble $\mathcal{M}_n(\mathbb{K})$:
 - a) Matrices particulières : vocabulaire

Dans l'ensemble des matrices carrées, on rencontrera fréquemment des matrices de formes particulières, qui s'avèreront utiles dans de nombreuses situations.

► Matrice triangulaire supérieure

On appelle matrice triangulaire supérieure toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $a_{ij} = 0$ si i > j.

On a alors

A = par exemple :

► Matrice triangulaire inférieure :

On appelle matrice triangulaire inférieure toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $a_{ij} = 0$ si i < j.

On a alors

A = par exemple:

► Matrice diagonale :

On appelle matrice diagonale toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $a_{ij} = 0$ si $i \neq j$. On a alors

$$A =$$
 par exemple:

b) Produit des matrices particulières :

Identité et matrices diagonales :

On dispose d'une matrice qui joue le rôle du 1 pour le produit des matrices carrées (et uniquement pour les matrices carrées...) : c'est l'identité.

Proposition 2

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
 et $I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \dots & \ddots & 0 \\ 0 & \dots & \dots & 1 \end{pmatrix}$ la matrice identité de taille n . Alors
$$AI_n = I_n A = A$$

▷ Preuve : On le vérifie avec la formule du produit :

◁

Le même genre de preuve permet de montrer la proposition suivante :

Proposition 3

Soit A et B deux matrices diagonales de $\mathcal{M}_n(\mathbb{K})$.

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \lambda_n \end{pmatrix}, \qquad B = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \mu_n \end{pmatrix}$$

Alors AB est diagonale également et on a :

Produit de matrices triangulaires

Propriété 4

Le produit de deux matrices triangulaires supérieures (resp. inférieur) est une matrice triangulaire supérieure (resp. inférieur)

 $\triangleright Preuve$:

◁

c) Matrices symétriques et anti-symétriques :

Définition 8

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$.

- ▶ On dit que A est **symétrique** si et seulement si $A^T = A$. On note $S_n(\mathbb{K})$ l'ensemble des matrices symétriques.
- ▶ On dit que A est **antisymétrique** si et seulement si $A^T = -A$. On note $\mathcal{A}_n(\mathbb{K})$ l'ensemble des matrices antisymétriques.

Exemples:

▶
$$B = \begin{pmatrix} -2 & 4 & -1 \\ 4 & 1 & 2 \\ -1 & 2 & 3 \end{pmatrix}$$
 est

2) Puissances de matrice :

a) Définition:

Définition 9

Soient $n \in \mathbb{N}$ et $A \in \mathcal{M}_n(\mathbb{K})$. Soit $N \in \mathbb{N}$. On définit A^N par Exemple:

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
. On a $A^2 =$, $A^3 =$

et donc pour tout $n \geq 3$ on a : $A^n =$

On dit qu'une telle matrice est nilpotente.

b) Puissance de matrice diagonale :

Proposition 4

Soient
$$(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{C}^n$$
 et $A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \lambda_n \end{pmatrix}$,

Alors pour tout $N \in \mathbb{N}$, on a

$$A^N =$$

▷ Preuve : On procède par récurrence, en utilisant la proposition 3.

c) Formule du binôme de Newton pour les matrices :

Théorème 1

Soient A et B dans $\mathcal{M}_p(\mathbb{K})$ et $p \in \mathbb{N}$.

Soit $n \in \mathbb{N}$. Si

alors,
$$(A+B)^n =$$

 $\triangleright Preuve \;$: Par récurrence : même preuve que dans $\mathbb{R}.$

◁

◁

Danger! Ne fonctionne pas si non commutatif

La commutativité est essentielle : dans la preuve, on écrit que

$$(A+B)^{n+1} = (A+B)(A+B)^n = (A+B)\sum_{k=0}^{n} \binom{n}{k} A^k B^{n-k}$$

On peut toujours distribuer et arriver à $\sum_{k=0}^{n} \binom{n}{k} A.A^k B^{n-k} + \sum_{k=0}^{n} \binom{n}{k} B.A^k B^{n-k}$ mais on ne peut pas "regrouper" les puissances de B si A et B ne commutent pas.

3) Matrices inversibles : le groupe linéaire

a) Définition:

Définition 10

Soit $A \in \mathcal{M}_n(\mathbb{K})$. A est dite inversible si et seulement si il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$AB = BA = I_n$$

On note $GL_n(\mathbb{K})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Proposition 5

Soit A une matrice inversible. Alors il existe une unique matrice B telle que AB = BA = I. On appelle alors cette matrice "inverse de A" et on la note A^{-1} .

 $\triangleright Preuve$:

◁

Exemple:

$$A = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$$
 a pour inverse $A^{-1} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}$: en effet, on a

OA noter: Uniquement pour les matrices carrées

L'inverse de matrice n'est défini que pour les matrices carrés : il faut pouvoir à la fois calculer AB et BA, donc pour que le produit soit compatible à chaque fois, le nombre de ligne doit être égal au nombre de colonne.

On admet pour le résultat suivant, très pratique et qui va permetre de gagner du temps :

Proposition 6

Soit A une matrice est carrée de $\mathcal{M}_n(\mathbb{K})$. Si il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = I_n$ alors A inversible d'inverse B.

b) Propriétés:

Propriété 5

Soient A et B deux matrices inversibles, alors (i) A^{-1} est inversible avec $(A^{-1})^{-1}$ =

- (ii) AB est inversible avec $(AB)^{-1}$ =
- (iii) A^T est inversible avec $(A^T)^{-1} =$

 $\triangleright Preuve$:

◁

c) Le groupe linéaire

L'ensemble $GL_n(\mathbb{K})$ muni du produit matriciel forme une structure qu'on appelle un groupe (d'où l'appellation GL_n pour "groupe linéaire"). Cela signifie les propriétés suivantes :

(i) $GL_n(\mathbb{K})$ est stable par le produit :

$$\forall A, B \in GL_n(\mathbb{K}), AB \in GL_n(\mathbb{K})$$

(ii) Le produit est associatif

$$\forall A, B, C \in GL_n(\mathbb{K}), (AB)C = A(BC)$$

(iii) $GL_n(\mathbb{K})$ admet un neutre pour le produit :

$$\forall A \in GL_n(\mathbb{K}), AI_n = A$$

(iv) Tout élément de $GL_n(\mathbb{K})$ admet un inverse pour le produit :

$$\forall A \in GL_n(\mathbb{K}), \exists B \in GL_n(\mathbb{K}), AB = BA = I_n$$

L'ensemble des nombres réels non nuls est également un groupe pour le produit, mais la différence fondamentale avec $GL_n(\mathbb{K})$ est que le produit n'est pas commutatif dans $GL_n(\mathbb{K})$