CORRIGÉ DU BTS 2004

I. Obtention d'un signal à la fréquence intermédiaire 168,5 kHz

1. SIGNAL MODULE s_A(t)

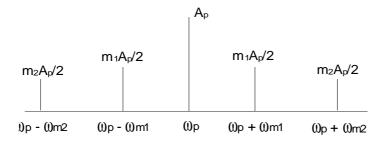
1.1. Amplitude : $S_A(t) = A_{p.}[1 + m_1.cos(\omega_{m1}.t) + m_2.cos(\omega_{m2}.t)]$

Elle dépend des signaux modulants.

1.2.

$$\begin{split} s_{A}\left(t\right) &= A_{p}.cos(\omega_{p}t) + \frac{m_{1}.A_{p}}{2}\left[cos(\omega_{p}-\omega_{m1})t + cos(\omega_{p}+\omega_{m1})t\right] \\ &+ \frac{m_{2}.A_{p}}{2}\left[cos(\omega_{p}-\omega_{m2})t + cos(\omega_{p}+\omega_{m2})t\right] \end{split}$$

1.3. Représenter l'allure du spectre en amplitude de $s_A(t)$.



1.4. Modulation avec porteuse ? (composante à ω_0)

2. MELANGEUR

$$\begin{aligned} \textbf{2.1.} \quad & s_{_{B}}(t) = K.s_{_{A}}(t).s_{_{osc}}(t) = K.S(t).\cos(\omega_{_{p}}t).S_{_{osc}}.\cos(\omega_{_{0}}t) \\ s_{_{B}}(t) = & \frac{K.S_{_{osc}}.S(t)}{2} \Big[cos(\omega_{_{0}} - \omega_{_{p}})t + cos(\omega_{_{p}} + \omega_{_{0}})t \Big] \end{aligned}$$

2.2.

2.2.1.

$$f_0 - f_p - 150$$
 $f_0 - f_p + 150$ $f_0 + f_p - 150$ $f_0 + f_p + 150$ $f_0 + f_p$

2.2.2.
$$f_0 - f_p = 168,5 \text{ kHz}$$
 $f_0 + f_p = 42968,5 \text{ kHz}$

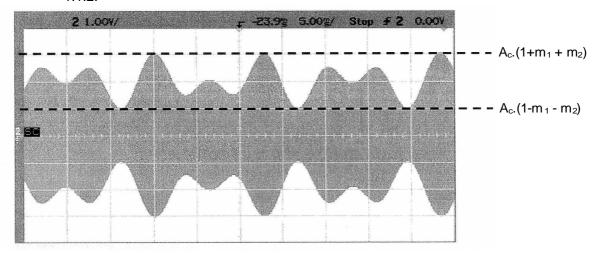
2.3. Filtre sélectif centré sur 168,5 kHz et de bande passante 300Hz ou passe-bas de fréquence de coupure supérieure à 168,65 kHz.

Serge Monnin Page 1 sur 6

II. Obtention du signal informatif

1. DEMODULATION D'AMPLITUDE

1.1. Indice de modulation



1.1.3.II faut que
$$A_c$$
.(1- m_1 - m_2) > 0 donc m_1 + m_2 < 1

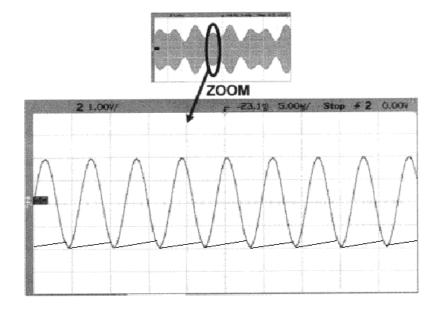
1.2. .Si $s_c(t) < 0$, la diode est passante et $s_d(t) = s_c(t)$. Sinon la diode est bloquée et le condensateur se décharge à travers R.

1.3. Constante de temps du démodulateur

1.3.1. La constante de temps doit être très supérieure à la période T afin que le condensateur ne se décharge pas pendant un e période HF.

1.3.2.
$$T = \frac{1}{f_0 - f_p} = 5.93 \mu s$$

1.3.4.

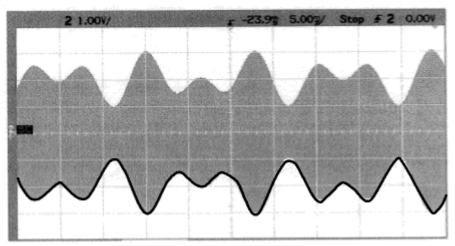


Serge Monnin Page 2 sur 6

1.4.

1.4.1.L'AOP est monté en inverseur, sa résistance d'entrée est égale à R_1 qui se trouve donc en parallèle sur C_1 .

1.4.2.



2. FILTRAGE ANALOGIQUE

2.1. En continu le condensateur se comporte comme un circuit ouvert et le montage est du type inverseur. En haute fréquence, il court-circuite la résistance R₂, la tension de sortie est alors égale à la tension sur l'entrée inverseuse qui est nulle. C'est donc un filtre passe-bas

2.2. Fonction de transfert du filtre

2.2.1.

$$\underline{T}(j\omega) = -\frac{\underline{Z}_2}{\underline{Z}_1} = -\frac{1}{R_1 \cdot \underline{Y}_2} = -\frac{1}{R_1 \left(\frac{1}{R_2} + jC_2\omega\right)} = -\frac{\frac{R_2}{R_1}}{1 + jR_2 \cdot C_2 \cdot \omega}$$

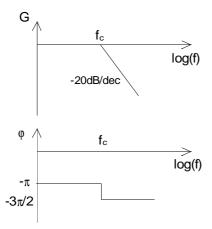
2.2.2.

$$T_0 = -\frac{R_2}{R_1}$$
 $\omega_c = \frac{1}{R_2.C_2}$ $f_c = \frac{1}{2\pi R_2.C_2}$

2.3.
$$f \ll f_c$$
 $\underline{T}(jf) = -1$ $G = 0dB$ $\phi = -\pi$

$$f >> f_c \qquad \underline{T}(jf) = -f_c/jf \qquad G = 20log(f_c) - 20log(f) : droite de pente -20dB/dec$$
 passant par le point $(f_c, 0dB)$
$$\phi = -\pi - \pi/2 = -3\pi/2$$

Serge Monnin Page 3 sur 6



2.4.

2.4.1. Le filtre ayant une atténuation de 20dB/dec, la fréquence de coupure doit se trouver 2 décades en dessous de la fréquence de 168,5 kHz pour obtenir une atténuation de 40 dB, soit $f_c = f_i/100 = 1,685$ kHz

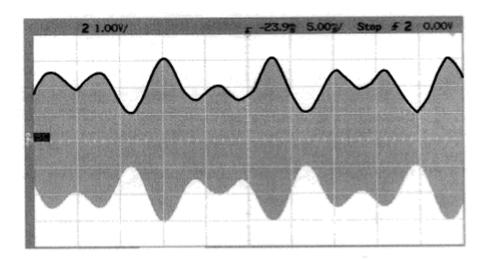
2.4.2.
$$C_2 = \frac{1}{2\pi R_2 f_c} = 2nF$$

2.5. Signal s_E(t) en sortie du filtre

2.5.1. Le filtre permet d'éliminer la composante HF du signal, le filtre laissant passer les composantes de fréquences 90Hz et 150Hz avec un coefficient d'amplification égal à -1.

$$s_E(t) = S_C(t) = A_C.(1 + m_1.cos(\omega_{m1}.t) + m_2.cos(\omega_{m2}.t))$$

2.5.2.



III. Traitement numérique de l'information

1.
$$y_n = x_n + 0.9.y_{n-1} - 0.9.y_{n-2}$$

2. y_n dépendant des échantillons de sortie précédents, il s'agit d'un filtre récursif.

3.
$$Y(z) = X(z) + 0.9.Z^{-1}.Y(z) - 0.9 z^{-2}.Y(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - 0.9 \cdot z^{-1} + 0.9 \cdot z^{-2}}$$

4.1. Pour que le filtre soit stable les pôles de H(z) doivent être situés à l'intérieur du cercle unité.

Les pôles de H(z) sont les zéros du dénominateur c'est-à-dire les racines de l'équation :

$$z^2 - 0.9z + 0.9 = 0$$

On obtient
$$z_1 = 0.45 + j0.835$$

$$z_2 = 0.45 - i0.835$$

Leur module est le même et vaut 0,95 < 1, donc le filtre est stable.

4.2.

4.2.1.
$$Y(z) = H(z).X(z) = \frac{1}{1-z^{-1}} \frac{1}{1-0.9z^{-1}+0.9z^{-2}}$$

4.2.2.
$$\lim_{n\to\infty} y_n = \lim_{z\to 1} (1-z^{-1}) \cdot Y(z) = \lim_{z\to 1} (1-z^{-1}) \frac{1}{1-z^{-1}} \frac{1}{1-0.9z^{-1}+0.9z^{-2}} = 1$$

4.2.3. La valeur finale est finie donc le fonctionnement est stable.

5.
$$z = e^{pT_e} = e^{j\omega T_E}$$

$$\underline{H}(j\omega) = \frac{1}{1 - 0.9.e^{-j\omega T_E} + 0.9.z^{-j2\omega T_E}}$$

$$\underline{H}(jf) = \frac{1}{1 - 0.9 \cdot e^{-j2\pi f/F_E} + 0.9 \cdot z^{-j4\omega f/F_E}}$$

6

6.1. Filtre passe-bande

6.2.
$$f_{centrale} = 0.17.F_{E}$$

6.3. Aux fréquences de coupures :
$$|\underline{H}(jf)| = \frac{H_{\text{Max}}}{\sqrt{2}} = \frac{11,3}{\sqrt{2}} = 8$$

On lit sur la courbe : $f_{C1} = 0.16$. Fe et $f_{C2} = 0.18$. Fe soit $\Delta f = 0.02$. Fe

7.

7.1.
$$F_{E1} = f_{centrale}/0.17 = 90/0.17 = 530 Hz$$

7.2. $F_{E1} > 2.fMax = 300 Hz$ donc la condition est vérifiée.

7.3.
$$\Delta f = 0.02$$
. $F_{E1} = 0.02.530 = 10.6$ Hz

7.4. La fréquence centrale valant 90 Hz et la bande passante 10,6 Hz, seul le terme à la fréquence de 90 Hz (signal modulant) est transmis avec un coefficient d'amplification de 11,3. (Le terme continu est amplifié de 1, et celui à 150 Hz d'un coefficient inférieur à 1)

Serge Monnin Page 5 sur 6

Serge Monnin Page 6 sur 6