
BTS SYSTEMES ÉLECTRONIQUES 2010 : CORRIGÉ Partie A

1.1. f = 1/T = 500 kHz.

1.2. $A = 20.\log(U_1/U_2) = 2.4$ dB, le gain quant à lui vaut -2,4 dB (la courbe tracée sur DR1 représente le gain et non l'atténuation)

1.3.

Fréquence en kHz

Document réponse 1

1.4. A 5 MHz le gain vaut -8 dB, l'atténuation + 8 dB.

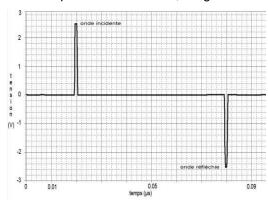
1.5. Filtre passe-bas.

2.1. R : résistance des fils, G : conductance du diélectrique.

2.2. $R = 0 \Omega$ et G = 0 S.

2.3.

2.4. R = 0 Ω et G = 0 S, donc $\underline{Z}_C = \sqrt{\frac{L}{C}}$ nombre réel : $\underline{Z}_C = R_C$


2.5. Rc = 120 Ω

2.6. $\Gamma_{S} = 0$ si RcH = Zc.

2.7. Les résistances R_T annulent les réflexions en bout de ligne.

Senge Monnin

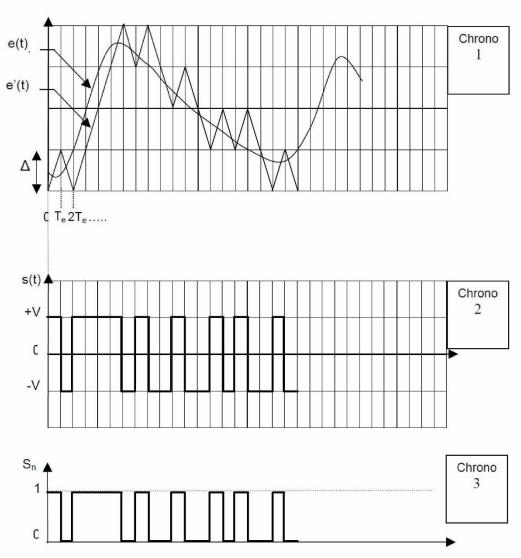
- **3.1.** Condition de mesure A : pas de réflexion donc pas de retour d'impulsion, Γ_{1} = 0
- **3.2.** $t_p = 30$ ns donc $t_{pl} = 30/5 = 6$ ns/m.
- **3.3.** Condition B : court-circuit en sortie donc pas de signal en sortie et réflexion totale, Γ_1 = -1.
- **3.4.** L'amplitude est la même, la ligne étant sans perte, seul le signe change.

Serge Mornin Page 2

Partie B

1.1.NB : les bornes + et – du premier AOP sont inversées.

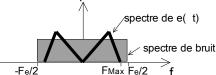
Le montage est un suiveur à haute impédance d'entrée et faible impédance de sortie, il évite au condensateur de se décharger dans les résistances R_0 : $v_2 = v_1$


1.2.
$$\underline{T} = \frac{1}{1 + jR_fC_f\omega} = \frac{1}{1 + j\omega/\omega_o}$$
 avec $\omega_o = 1/R_fC_f$.

1.3. Passe-bas destiné à éliminer les parasites éventuellement présents et jouant le rôle de filtre antirepliement.

1.4.
$$f_0 = 72,3 \text{ Hz}$$

1.5.
$$Vd = V2/24$$
 et $Vadapt = Vd = V2/24$


2.1.

2.2.1. La pente du signal e'(t) doit être supérieure à la pente du signal e(t) pour éviter la saturation de

pente :
$$\frac{\Delta}{T_e} > \left| \frac{de}{dt} \right|_{Max}$$

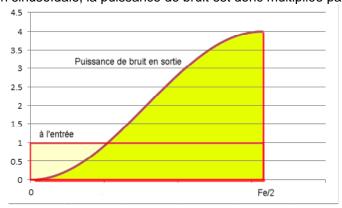
- **2.2.2.** La deuxième condition est celle de Shannon Nyquist : $F_e = 1/T_e > 2$ FMAX , FMAX étant la fréquence la plus élevée du spectre de e(t).
- 2.3. Bruit de quantification

- **2.4.** Le premier étage est un intégrateur qui permet de reconstituer à partir de s(t) le signal e'(t), le second étage est un filtre passe-bas qui lisse e'(t) pour obtenir e(t).
- **3.1.** $1/(1-z^{-1})$ correspond à une intégration et z^{-1} à un retard d'une période d'échantillonnage.

3.2.
$$S_1(z) = \frac{\frac{1}{1-z^{-1}}}{1+\frac{z^{-1}}{1-z^{-1}}} E(z) + \frac{1}{1+\frac{z^{-1}}{1-z^{-1}}} B_q(z) = E(z) + (1-z^{-1}) B_q(z)$$

Donc
$$T(z) = 1$$
 et $N(z) = 1-z^{-1}$

3.3.
$$N(i\omega) = 1 - e^{-i\omega Te}$$


3.4.
$$\underline{N}(j\omega) = 1 - e^{-j\omega Te} = e^{-j\omega Te/2}$$
. $(e^{+j\omega Te/2} - e^{-j\omega Te/2}) = e^{-j\pi f/Fe}$. $(e^{+j\pi f/Fe} - e^{-j\pi f/Fe}) = e^{-j\pi f/Fe}$. $(e^{+j\pi f/Fe} - e^{-j\pi f/Fe}) = e^{-j\pi f/Fe}$.

3.5. N(f) =
$$2 |\sin(\pi f/F_e)|$$

3.6.
$$N(0) = 0$$
 et $N(F_e/2) = 2$

3.7. C'est un filtre passe-haut : il atténue le bruit de quantification en basse fréquence mais l'amplifie lorsque la fréquence augmente (coefficient 2 à $f = F_e/2$). L'amplitude du bruit est multipliée par une fonction sinusoïdale, la puissance de bruit est donc multipliée par un sinus au carré.

3.8. La puissance de bruit est atténuée de 10³ soit 10.log(10³) = 30 dB d'où l'intérêt du suréchantillonnage.

- 4.1. Filtre passe-bas.
- **4.2.** $d_n = b_0.s_{1,n} + b_1.s_{1,n-1} + b_2.s_{1,n-2}$
- **4.3.** $s_n = d_n a_1.s_{n-1} a_2.s_{n-2}.$
- **4.4.** En remplaçant d_n par la première expression dans s_n on obtient le résultat attendu.
- 4.5. Filtre récursif car s_n dépend des s_{n-i}.
- **4.6.** $t_r = 4.6 \text{ ms}$

4.7. D'après 4.4 :
$$S(z) = b_0.S_1(z) + b_1.z^{-1}.S_1(z) + b_2.z^{-2}.S_1(z) - a_1.z^{-1}.S(z) - a_2.z^{-2}.S(z)$$

donc:
$$S(z).[1 + a_1.z^{-1}.S(z) + a_2.z^{-2}.S(z)] = S_1(z).[b_0.+b_1.z^{-1} + b_2.z^{-2}]$$

et $H(z) = S(z)/S_1(z) = [b_0.+b_1.z^{-1} + b_2.z^{-2}]/[1 + a_1.z^{-1}.S(z) + a_2.z^{-2}.S(z)]$

- **4.8.** L'équation z^2 -1,911.z +0,915 a deux solutions : $z = 0,95 \pm 0,045$ j qui ont pour module $(0,95^2 + 0,045^2) = 0,956$.
- 4.9. Le filtre est stable car ses pôles sont à l'intérieur du cercle unité.
- 4.10. Oui car la réponse indicielle de la figure 16 montrait cette stabilité.
- **4.11.** BP = 100Hz. On a vu à la question 3.7 que les composantes de bruit étaient plus importantes en HF, ce filtre va donc les éliminer. En revanche le spectre du signal v_{Adapt} n'est pas affecté par le filtre car ses composantes ont des fréquences inférieures à 100 Hz.
- **5.1.** $V_2 = 13 \text{ V et } V_1 = 0.7 \text{ V}.$
- 5.2. NB: c'est la figure 18 (et non 17) à laquelle il faut se reporter pour lire 01011101 soit \$5D
- **5.3.** $T_B = 52\mu s$ et D = 19,2 kbps.
- **5.4.** On lit \$5D, soit 93 en décimal, \$7F correspondant à 127, le pourcentage de charge vaut 73,2 %. La charge est suffisante car > 70% (voir page B6).

Serge Mornin Page 5